Commit 33aa4ca4 authored by topjohnwu's avatar topjohnwu

Move libmincrypt into separate repo

parent 05658caf
......@@ -19,3 +19,6 @@
[submodule "nanopb"]
path = native/jni/external/nanopb
url = https://github.com/nanopb/nanopb.git
[submodule "mincrypt"]
path = native/jni/external/mincrypt
url = https://github.com/topjohnwu/mincrypt.git
......@@ -12,6 +12,7 @@ LIBFDT := $(EXT_PATH)/dtc/libfdt
LIBNANOPB := $(EXT_PATH)/nanopb
LIBSYSTEMPROPERTIES := jni/systemproperties/include
LIBUTILS := jni/utils/include
LIBMINCRYPT := $(EXT_PATH)/mincrypt/include
########################
# Binaries
......@@ -127,6 +128,7 @@ LOCAL_STATIC_LIBRARIES := libmincrypt liblzma liblz4 libbz2 libfdt libutils
LOCAL_C_INCLUDES := \
jni/include \
$(EXT_PATH)/include \
$(LIBMINCRYPT) \
$(LIBLZMA) \
$(LIBLZ4) \
$(LIBBZ2) \
......
......@@ -28,20 +28,6 @@ LOCAL_SRC_FILES := \
xz-embedded/xz_dec_stream.c
include $(BUILD_STATIC_LIBRARY)
# libmincrypt.a
include $(CLEAR_VARS)
LOCAL_MODULE:= libmincrypt
LOCAL_C_INCLUDES := $(EXT_PATH)/include
LOCAL_SRC_FILES := \
mincrypt/dsa_sig.c \
mincrypt/p256.c \
mincrypt/p256_ec.c \
mincrypt/p256_ecdsa.c \
mincrypt/rsa.c \
mincrypt/sha.c \
mincrypt/sha256.c
include $(BUILD_STATIC_LIBRARY)
# libnanopb.a
include $(CLEAR_VARS)
LOCAL_MODULE:= libnanopb
......@@ -265,3 +251,5 @@ LOCAL_SRC_FILES := \
selinux/libsepol/cil/src/cil_post.c
LOCAL_CFLAGS += -Dgetline=__getline -Wno-implicit-function-declaration
include $(BUILD_STATIC_LIBRARY)
include $(EXT_PATH)/mincrypt/Android.mk
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_DSA_SIG_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_DSA_SIG_H_
#include "mincrypt/p256.h"
#ifdef __cplusplus
extern "C" {
#endif
// Returns 0 if input sig is not a valid ASN.1 sequence
int dsa_sig_unpack(unsigned char* sig, int sig_len, p256_int* r_int, p256_int* s_int);
#ifdef __cplusplus
}
#endif
#endif /* SYSTEM_CORE_INCLUDE_MINCRYPT_DSA_SIG_H_ */
/*
* Copyright 2007 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_HASH_INTERNAL_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_HASH_INTERNAL_H_
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
struct HASH_CTX; // forward decl
typedef struct HASH_VTAB {
void (* const init)(struct HASH_CTX*);
void (* const update)(struct HASH_CTX*, const void*, int);
const uint8_t* (* const final)(struct HASH_CTX*);
const uint8_t* (* const hash)(const void*, int, uint8_t*);
int size;
} HASH_VTAB;
typedef struct HASH_CTX {
const HASH_VTAB * f;
uint64_t count;
uint8_t buf[64];
uint32_t state[8]; // upto SHA2
} HASH_CTX;
#define HASH_init(ctx) (ctx)->f->init(ctx)
#define HASH_update(ctx, data, len) (ctx)->f->update(ctx, data, len)
#define HASH_final(ctx) (ctx)->f->final(ctx)
#define HASH_hash(data, len, digest) (ctx)->f->hash(data, len, digest)
#define HASH_size(ctx) (ctx)->f->size
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // SYSTEM_CORE_INCLUDE_MINCRYPT_HASH_INTERNAL_H_
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_LITE_P256_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_LITE_P256_H_
// Collection of routines manipulating 256 bit unsigned integers.
// Just enough to implement ecdsa-p256 and related algorithms.
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define P256_BITSPERDIGIT 32
#define P256_NDIGITS 8
#define P256_NBYTES 32
typedef int p256_err;
typedef uint32_t p256_digit;
typedef int32_t p256_sdigit;
typedef uint64_t p256_ddigit;
typedef int64_t p256_sddigit;
// Defining p256_int as struct to leverage struct assigment.
typedef struct {
p256_digit a[P256_NDIGITS];
} p256_int;
extern const p256_int SECP256r1_n; // Curve order
extern const p256_int SECP256r1_p; // Curve prime
extern const p256_int SECP256r1_b; // Curve param
// Initialize a p256_int to zero.
void p256_init(p256_int* a);
// Clear a p256_int to zero.
void p256_clear(p256_int* a);
// Return bit. Index 0 is least significant.
int p256_get_bit(const p256_int* a, int index);
// b := a % MOD
void p256_mod(
const p256_int* MOD,
const p256_int* a,
p256_int* b);
// c := a * (top_b | b) % MOD
void p256_modmul(
const p256_int* MOD,
const p256_int* a,
const p256_digit top_b,
const p256_int* b,
p256_int* c);
// b := 1 / a % MOD
// MOD best be SECP256r1_n
void p256_modinv(
const p256_int* MOD,
const p256_int* a,
p256_int* b);
// b := 1 / a % MOD
// MOD best be SECP256r1_n
// Faster than p256_modinv()
void p256_modinv_vartime(
const p256_int* MOD,
const p256_int* a,
p256_int* b);
// b := a << (n % P256_BITSPERDIGIT)
// Returns the bits shifted out of most significant digit.
p256_digit p256_shl(const p256_int* a, int n, p256_int* b);
// b := a >> (n % P256_BITSPERDIGIT)
void p256_shr(const p256_int* a, int n, p256_int* b);
int p256_is_zero(const p256_int* a);
int p256_is_odd(const p256_int* a);
int p256_is_even(const p256_int* a);
// Returns -1, 0 or 1.
int p256_cmp(const p256_int* a, const p256_int *b);
// c: = a - b
// Returns -1 on borrow.
int p256_sub(const p256_int* a, const p256_int* b, p256_int* c);
// c := a + b
// Returns 1 on carry.
int p256_add(const p256_int* a, const p256_int* b, p256_int* c);
// c := a + (single digit)b
// Returns carry 1 on carry.
int p256_add_d(const p256_int* a, p256_digit b, p256_int* c);
// ec routines.
// {out_x,out_y} := nG
void p256_base_point_mul(const p256_int *n,
p256_int *out_x,
p256_int *out_y);
// {out_x,out_y} := n{in_x,in_y}
void p256_point_mul(const p256_int *n,
const p256_int *in_x,
const p256_int *in_y,
p256_int *out_x,
p256_int *out_y);
// {out_x,out_y} := n1G + n2{in_x,in_y}
void p256_points_mul_vartime(
const p256_int *n1, const p256_int *n2,
const p256_int *in_x, const p256_int *in_y,
p256_int *out_x, p256_int *out_y);
// Return whether point {x,y} is on curve.
int p256_is_valid_point(const p256_int* x, const p256_int* y);
// Outputs big-endian binary form. No leading zero skips.
void p256_to_bin(const p256_int* src, uint8_t dst[P256_NBYTES]);
// Reads from big-endian binary form,
// thus pre-pad with leading zeros if short.
void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst);
#define P256_DIGITS(x) ((x)->a)
#define P256_DIGIT(x,y) ((x)->a[y])
#define P256_ZERO {{0}}
#define P256_ONE {{1}}
#ifdef __cplusplus
}
#endif
#endif // SYSTEM_CORE_INCLUDE_MINCRYPT_LITE_P256_H_
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_P256_ECDSA_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_P256_ECDSA_H_
// Using current directory as relative include path here since
// this code typically gets lifted into a variety of build systems
// and directory structures.
#include "p256.h"
#ifdef __cplusplus
extern "C" {
#endif
// Returns 0 if {r,s} is not a signature on message for
// public key {key_x,key_y}.
//
// Note: message is a p256_int.
// Convert from a binary string using p256_from_bin().
int p256_ecdsa_verify(const p256_int* key_x,
const p256_int* key_y,
const p256_int* message,
const p256_int* r, const p256_int* s);
#ifdef __cplusplus
}
#endif
#endif // SYSTEM_CORE_INCLUDE_MINCRYPT_P256_ECDSA_H_
/* rsa.h
**
** Copyright 2008, The Android Open Source Project
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of Google Inc. nor the names of its contributors may
** be used to endorse or promote products derived from this software
** without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_RSA_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_RSA_H_
#include <inttypes.h>
#ifdef __cplusplus
extern "C" {
#endif
#define RSANUMBYTES 256 /* 2048 bit key length */
#define RSANUMWORDS (RSANUMBYTES / sizeof(uint32_t))
typedef struct RSAPublicKey {
int len; /* Length of n[] in number of uint32_t */
uint32_t n0inv; /* -1 / n[0] mod 2^32 */
uint32_t n[RSANUMWORDS]; /* modulus as little endian array */
uint32_t rr[RSANUMWORDS]; /* R^2 as little endian array */
int exponent; /* 3 or 65537 */
} RSAPublicKey;
int RSA_verify(const RSAPublicKey *key,
const uint8_t* signature,
const int len,
const uint8_t* hash,
const int hash_len);
#ifdef __cplusplus
}
#endif
#endif // SYSTEM_CORE_INCLUDE_MINCRYPT_RSA_H_
/*
* Copyright 2005 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_SHA1_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_SHA1_H_
#include <stdint.h>
#include "hash-internal.h"
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
typedef HASH_CTX SHA_CTX;
void SHA_init(SHA_CTX* ctx);
void SHA_update(SHA_CTX* ctx, const void* data, int len);
const uint8_t* SHA_final(SHA_CTX* ctx);
// Convenience method. Returns digest address.
// NOTE: *digest needs to hold SHA_DIGEST_SIZE bytes.
const uint8_t* SHA_hash(const void* data, int len, uint8_t* digest);
#define SHA_DIGEST_SIZE 20
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // SYSTEM_CORE_INCLUDE_MINCRYPT_SHA1_H_
/*
* Copyright 2011 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef SYSTEM_CORE_INCLUDE_MINCRYPT_SHA256_H_
#define SYSTEM_CORE_INCLUDE_MINCRYPT_SHA256_H_
#include <stdint.h>
#include "hash-internal.h"
#ifdef __cplusplus
extern "C" {
#endif // __cplusplus
typedef HASH_CTX SHA256_CTX;
void SHA256_init(SHA256_CTX* ctx);
void SHA256_update(SHA256_CTX* ctx, const void* data, int len);
const uint8_t* SHA256_final(SHA256_CTX* ctx);
// Convenience method. Returns digest address.
const uint8_t* SHA256_hash(const void* data, int len, uint8_t* digest);
#define SHA256_DIGEST_SIZE 32
#ifdef __cplusplus
}
#endif // __cplusplus
#endif // SYSTEM_CORE_INCLUDE_MINCRYPT_SHA256_H_
#ifndef SHA1_H
#define SHA1_H
/*
SHA-1 in C
By Steve Reid <steve@edmweb.com>
100% Public Domain
*/
#include "stdint.h"
typedef struct
{
uint32_t state[5];
uint32_t count[2];
unsigned char buffer[64];
} SHA1_CTX;
void SHA1Transform(
uint32_t state[5],
const unsigned char buffer[64]
);
void SHA1Init(
SHA1_CTX * context
);
void SHA1Update(
SHA1_CTX * context,
const unsigned char *data,
uint32_t len
);
void SHA1Final(
unsigned char digest[20],
SHA1_CTX * context
);
void SHA1(
char *hash_out,
const char *str,
int len);
#endif /* SHA1_H */
Subproject commit ac33afa79e57e198b9eeec231140d64816a0bb1e
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include "mincrypt/dsa_sig.h"
#include "mincrypt/p256.h"
/**
* Trims off the leading zero bytes and copy it to a buffer aligning it to the end.
*/
static inline int trim_to_p256_bytes(unsigned char dst[P256_NBYTES], unsigned char *src,
int src_len) {
int dst_offset;
while (*src == '\0' && src_len > 0) {
src++;
src_len--;
}
if (src_len > P256_NBYTES || src_len < 1) {
return 0;
}
dst_offset = P256_NBYTES - src_len;
memset(dst, 0, dst_offset);
memcpy(dst + dst_offset, src, src_len);
return 1;
}
/**
* Unpacks the ASN.1 DSA signature sequence.
*/
int dsa_sig_unpack(unsigned char* sig, int sig_len, p256_int* r_int, p256_int* s_int) {
/*
* Structure is:
* 0x30 0xNN SEQUENCE + s_length
* 0x02 0xNN INTEGER + r_length
* 0xAA 0xBB .. r_length bytes of "r" (offset 4)
* 0x02 0xNN INTEGER + s_length
* 0xMM 0xNN .. s_length bytes of "s" (offset 6 + r_len)
*/
int seq_len;
unsigned char r_bytes[P256_NBYTES];
unsigned char s_bytes[P256_NBYTES];
int r_len;
int s_len;
memset(r_bytes, 0, sizeof(r_bytes));
memset(s_bytes, 0, sizeof(s_bytes));
/*
* Must have at least:
* 2 bytes sequence header and length
* 2 bytes R integer header and length
* 1 byte of R
* 2 bytes S integer header and length
* 1 byte of S
*
* 8 bytes total
*/
if (sig_len < 8 || sig[0] != 0x30 || sig[2] != 0x02) {
return 0;
}
seq_len = sig[1];
if ((seq_len <= 0) || (seq_len + 2 != sig_len)) {
return 0;
}
r_len = sig[3];
/*
* Must have at least:
* 2 bytes for R header and length
* 2 bytes S integer header and length
* 1 byte of S
*/
if ((r_len < 1) || (r_len > seq_len - 5) || (sig[4 + r_len] != 0x02)) {
return 0;
}
s_len = sig[5 + r_len];
/**
* Must have:
* 2 bytes for R header and length
* r_len bytes for R
* 2 bytes S integer header and length
*/
if ((s_len < 1) || (s_len != seq_len - 4 - r_len)) {
return 0;
}
/*
* ASN.1 encoded integers are zero-padded for positive integers. Make sure we have
* a correctly-sized buffer and that the resulting integer isn't too large.
*/
if (!trim_to_p256_bytes(r_bytes, &sig[4], r_len)
|| !trim_to_p256_bytes(s_bytes, &sig[6 + r_len], s_len)) {
return 0;
}
p256_from_bin(r_bytes, r_int);
p256_from_bin(s_bytes, s_int);
return 1;
}
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This is an implementation of the P256 elliptic curve group. It's written to
// be portable 32-bit, although it's still constant-time.
//
// WARNING: Implementing these functions in a constant-time manner is far from
// obvious. Be careful when touching this code.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
#include <assert.h>
#include <stdint.h>
#include <string.h>
#include <stdio.h>
#include "mincrypt/p256.h"
const p256_int SECP256r1_n = // curve order
{{0xfc632551, 0xf3b9cac2, 0xa7179e84, 0xbce6faad, -1, -1, 0, -1}};
const p256_int SECP256r1_p = // curve field size
{{-1, -1, -1, 0, 0, 0, 1, -1 }};
const p256_int SECP256r1_b = // curve b
{{0x27d2604b, 0x3bce3c3e, 0xcc53b0f6, 0x651d06b0,
0x769886bc, 0xb3ebbd55, 0xaa3a93e7, 0x5ac635d8}};
void p256_init(p256_int* a) {
memset(a, 0, sizeof(*a));
}
void p256_clear(p256_int* a) { p256_init(a); }
int p256_get_bit(const p256_int* scalar, int bit) {
return (P256_DIGIT(scalar, bit / P256_BITSPERDIGIT)
>> (bit & (P256_BITSPERDIGIT - 1))) & 1;
}
int p256_is_zero(const p256_int* a) {
int i, result = 0;
for (i = 0; i < P256_NDIGITS; ++i) result |= P256_DIGIT(a, i);
return !result;
}
// top, c[] += a[] * b
// Returns new top
static p256_digit mulAdd(const p256_int* a,
p256_digit b,
p256_digit top,
p256_digit* c) {
int i;
p256_ddigit carry = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += *c;
carry += (p256_ddigit)P256_DIGIT(a, i) * b;
*c++ = (p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return top + (p256_digit)carry;
}
// top, c[] -= top_a, a[]
static p256_digit subTop(p256_digit top_a,
const p256_digit* a,
p256_digit top_c,
p256_digit* c) {
int i;
p256_sddigit borrow = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += *c;
borrow -= *a++;
*c++ = (p256_digit)borrow;
borrow >>= P256_BITSPERDIGIT;
}
borrow += top_c;
borrow -= top_a;
top_c = (p256_digit)borrow;
assert((borrow >> P256_BITSPERDIGIT) == 0);
return top_c;
}
// top, c[] -= MOD[] & mask (0 or -1)
// returns new top.
static p256_digit subM(const p256_int* MOD,
p256_digit top,
p256_digit* c,
p256_digit mask) {
int i;
p256_sddigit borrow = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += *c;
borrow -= P256_DIGIT(MOD, i) & mask;
*c++ = (p256_digit)borrow;
borrow >>= P256_BITSPERDIGIT;
}
return top + (p256_digit)borrow;
}
// top, c[] += MOD[] & mask (0 or -1)
// returns new top.
static p256_digit addM(const p256_int* MOD,
p256_digit top,
p256_digit* c,
p256_digit mask) {
int i;
p256_ddigit carry = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += *c;
carry += P256_DIGIT(MOD, i) & mask;
*c++ = (p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return top + (p256_digit)carry;
}
// c = a * b mod MOD. c can be a and/or b.
void p256_modmul(const p256_int* MOD,
const p256_int* a,
const p256_digit top_b,
const p256_int* b,
p256_int* c) {
p256_digit tmp[P256_NDIGITS * 2 + 1] = { 0 };
p256_digit top = 0;
int i;
// Multiply/add into tmp.
for (i = 0; i < P256_NDIGITS; ++i) {
if (i) tmp[i + P256_NDIGITS - 1] = top;
top = mulAdd(a, P256_DIGIT(b, i), 0, tmp + i);
}
// Multiply/add top digit
tmp[i + P256_NDIGITS - 1] = top;
top = mulAdd(a, top_b, 0, tmp + i);
// Reduce tmp, digit by digit.
for (; i >= 0; --i) {
p256_digit reducer[P256_NDIGITS] = { 0 };
p256_digit top_reducer;
// top can be any value at this point.
// Guestimate reducer as top * MOD, since msw of MOD is -1.
top_reducer = mulAdd(MOD, top, 0, reducer);
// Subtract reducer from top | tmp.
top = subTop(top_reducer, reducer, top, tmp + i);
// top is now either 0 or 1. Make it 0, fixed-timing.
assert(top <= 1);
top = subM(MOD, top, tmp + i, ~(top - 1));
assert(top == 0);
// We have now reduced the top digit off tmp. Fetch new top digit.
top = tmp[i + P256_NDIGITS - 1];
}
// tmp might still be larger than MOD, yet same bit length.
// Make sure it is less, fixed-timing.
addM(MOD, 0, tmp, subM(MOD, 0, tmp, -1));
memcpy(c, tmp, P256_NBYTES);
}
int p256_is_odd(const p256_int* a) { return P256_DIGIT(a, 0) & 1; }
int p256_is_even(const p256_int* a) { return !(P256_DIGIT(a, 0) & 1); }
p256_digit p256_shl(const p256_int* a, int n, p256_int* b) {
int i;
p256_digit top = P256_DIGIT(a, P256_NDIGITS - 1);
n %= P256_BITSPERDIGIT;
for (i = P256_NDIGITS - 1; i > 0; --i) {
p256_digit accu = (P256_DIGIT(a, i) << n);
accu |= (P256_DIGIT(a, i - 1) >> (P256_BITSPERDIGIT - n));
P256_DIGIT(b, i) = accu;
}
P256_DIGIT(b, i) = (P256_DIGIT(a, i) << n);
top = (p256_digit)((((p256_ddigit)top) << n) >> P256_BITSPERDIGIT);
return top;
}
void p256_shr(const p256_int* a, int n, p256_int* b) {
int i;
n %= P256_BITSPERDIGIT;
for (i = 0; i < P256_NDIGITS - 1; ++i) {
p256_digit accu = (P256_DIGIT(a, i) >> n);
accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - n));
P256_DIGIT(b, i) = accu;
}
P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> n);
}
static void p256_shr1(const p256_int* a, int highbit, p256_int* b) {
int i;
for (i = 0; i < P256_NDIGITS - 1; ++i) {
p256_digit accu = (P256_DIGIT(a, i) >> 1);
accu |= (P256_DIGIT(a, i + 1) << (P256_BITSPERDIGIT - 1));
P256_DIGIT(b, i) = accu;
}
P256_DIGIT(b, i) = (P256_DIGIT(a, i) >> 1) |
(highbit << (P256_BITSPERDIGIT - 1));
}
// Return -1, 0, 1 for a < b, a == b or a > b respectively.
int p256_cmp(const p256_int* a, const p256_int* b) {
int i;
p256_sddigit borrow = 0;
p256_digit notzero = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
// Track whether any result digit is ever not zero.
// Relies on !!(non-zero) evaluating to 1, e.g., !!(-1) evaluating to 1.
notzero |= !!((p256_digit)borrow);
borrow >>= P256_BITSPERDIGIT;
}
return (int)borrow | notzero;
}
// c = a - b. Returns borrow: 0 or -1.
int p256_sub(const p256_int* a, const p256_int* b, p256_int* c) {
int i;
p256_sddigit borrow = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
borrow += (p256_sddigit)P256_DIGIT(a, i) - P256_DIGIT(b, i);
if (c) P256_DIGIT(c, i) = (p256_digit)borrow;
borrow >>= P256_BITSPERDIGIT;
}
return (int)borrow;
}
// c = a + b. Returns carry: 0 or 1.
int p256_add(const p256_int* a, const p256_int* b, p256_int* c) {
int i;
p256_ddigit carry = 0;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += (p256_ddigit)P256_DIGIT(a, i) + P256_DIGIT(b, i);
if (c) P256_DIGIT(c, i) = (p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return (int)carry;
}
// b = a + d. Returns carry, 0 or 1.
int p256_add_d(const p256_int* a, p256_digit d, p256_int* b) {
int i;
p256_ddigit carry = d;
for (i = 0; i < P256_NDIGITS; ++i) {
carry += (p256_ddigit)P256_DIGIT(a, i);
if (b) P256_DIGIT(b, i) = (p256_digit)carry;
carry >>= P256_BITSPERDIGIT;
}
return (int)carry;
}
// b = 1/a mod MOD, binary euclid.
void p256_modinv_vartime(const p256_int* MOD,
const p256_int* a,
p256_int* b) {
p256_int R = P256_ZERO;
p256_int S = P256_ONE;
p256_int U = *MOD;
p256_int V = *a;
for (;;) {
if (p256_is_even(&U)) {
p256_shr1(&U, 0, &U);
if (p256_is_even(&R)) {
p256_shr1(&R, 0, &R);
} else {
// R = (R+MOD)/2
p256_shr1(&R, p256_add(&R, MOD, &R), &R);
}
} else if (p256_is_even(&V)) {
p256_shr1(&V, 0, &V);
if (p256_is_even(&S)) {
p256_shr1(&S, 0, &S);
} else {
// S = (S+MOD)/2
p256_shr1(&S, p256_add(&S, MOD, &S) , &S);
}
} else { // U,V both odd.
if (!p256_sub(&V, &U, NULL)) {
p256_sub(&V, &U, &V);
if (p256_sub(&S, &R, &S)) p256_add(&S, MOD, &S);
if (p256_is_zero(&V)) break; // done.
} else {
p256_sub(&U, &V, &U);
if (p256_sub(&R, &S, &R)) p256_add(&R, MOD, &R);
}
}
}
p256_mod(MOD, &R, b);
}
void p256_mod(const p256_int* MOD,
const p256_int* in,
p256_int* out) {
if (out != in) *out = *in;
addM(MOD, 0, P256_DIGITS(out), subM(MOD, 0, P256_DIGITS(out), -1));
}
// Verify y^2 == x^3 - 3x + b mod p
// and 0 < x < p and 0 < y < p
int p256_is_valid_point(const p256_int* x, const p256_int* y) {
p256_int y2, x3;
if (p256_cmp(&SECP256r1_p, x) <= 0 ||
p256_cmp(&SECP256r1_p, y) <= 0 ||
p256_is_zero(x) ||
p256_is_zero(y)) return 0;
p256_modmul(&SECP256r1_p, y, 0, y, &y2); // y^2
p256_modmul(&SECP256r1_p, x, 0, x, &x3); // x^2
p256_modmul(&SECP256r1_p, x, 0, &x3, &x3); // x^3
if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - x
if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 2x
if (p256_sub(&x3, x, &x3)) p256_add(&x3, &SECP256r1_p, &x3); // x^3 - 3x
if (p256_add(&x3, &SECP256r1_b, &x3)) // x^3 - 3x + b
p256_sub(&x3, &SECP256r1_p, &x3);
return p256_cmp(&y2, &x3) == 0;
}
void p256_from_bin(const uint8_t src[P256_NBYTES], p256_int* dst) {
int i;
const uint8_t* p = &src[0];
for (i = P256_NDIGITS - 1; i >= 0; --i) {
P256_DIGIT(dst, i) =
(p[0] << 24) |
(p[1] << 16) |
(p[2] << 8) |
p[3];
p += 4;
}
}
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// This is an implementation of the P256 elliptic curve group. It's written to
// be portable 32-bit, although it's still constant-time.
//
// WARNING: Implementing these functions in a constant-time manner is far from
// obvious. Be careful when touching this code.
//
// See http://www.imperialviolet.org/2010/12/04/ecc.html ([1]) for background.
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "mincrypt/p256.h"
typedef uint8_t u8;
typedef uint32_t u32;
typedef int32_t s32;
typedef uint64_t u64;
/* Our field elements are represented as nine 32-bit limbs.
*
* The value of an felem (field element) is:
* x[0] + (x[1] * 2**29) + (x[2] * 2**57) + ... + (x[8] * 2**228)
*
* That is, each limb is alternately 29 or 28-bits wide in little-endian
* order.
*
* This means that an felem hits 2**257, rather than 2**256 as we would like. A
* 28, 29, ... pattern would cause us to hit 2**256, but that causes problems
* when multiplying as terms end up one bit short of a limb which would require
* much bit-shifting to correct.
*
* Finally, the values stored in an felem are in Montgomery form. So the value
* |y| is stored as (y*R) mod p, where p is the P-256 prime and R is 2**257.
*/
typedef u32 limb;
#define NLIMBS 9
typedef limb felem[NLIMBS];
static const limb kBottom28Bits = 0xfffffff;
static const limb kBottom29Bits = 0x1fffffff;
/* kOne is the number 1 as an felem. It's 2**257 mod p split up into 29 and
* 28-bit words. */
static const felem kOne = {
2, 0, 0, 0xffff800,
0x1fffffff, 0xfffffff, 0x1fbfffff, 0x1ffffff,
0
};
static const felem kZero = {0};
static const felem kP = {
0x1fffffff, 0xfffffff, 0x1fffffff, 0x3ff,
0, 0, 0x200000, 0xf000000,
0xfffffff
};
static const felem k2P = {
0x1ffffffe, 0xfffffff, 0x1fffffff, 0x7ff,
0, 0, 0x400000, 0xe000000,
0x1fffffff
};
/* kPrecomputed contains precomputed values to aid the calculation of scalar
* multiples of the base point, G. It's actually two, equal length, tables
* concatenated.
*
* The first table contains (x,y) felem pairs for 16 multiples of the base
* point, G.
*
* Index | Index (binary) | Value
* 0 | 0000 | 0G (all zeros, omitted)
* 1 | 0001 | G
* 2 | 0010 | 2**64G
* 3 | 0011 | 2**64G + G
* 4 | 0100 | 2**128G
* 5 | 0101 | 2**128G + G
* 6 | 0110 | 2**128G + 2**64G
* 7 | 0111 | 2**128G + 2**64G + G
* 8 | 1000 | 2**192G
* 9 | 1001 | 2**192G + G
* 10 | 1010 | 2**192G + 2**64G
* 11 | 1011 | 2**192G + 2**64G + G
* 12 | 1100 | 2**192G + 2**128G
* 13 | 1101 | 2**192G + 2**128G + G
* 14 | 1110 | 2**192G + 2**128G + 2**64G
* 15 | 1111 | 2**192G + 2**128G + 2**64G + G
*
* The second table follows the same style, but the terms are 2**32G,
* 2**96G, 2**160G, 2**224G.
*
* This is ~2KB of data. */
static const limb kPrecomputed[NLIMBS * 2 * 15 * 2] = {
0x11522878, 0xe730d41, 0xdb60179, 0x4afe2ff, 0x12883add, 0xcaddd88, 0x119e7edc, 0xd4a6eab, 0x3120bee,
0x1d2aac15, 0xf25357c, 0x19e45cdd, 0x5c721d0, 0x1992c5a5, 0xa237487, 0x154ba21, 0x14b10bb, 0xae3fe3,
0xd41a576, 0x922fc51, 0x234994f, 0x60b60d3, 0x164586ae, 0xce95f18, 0x1fe49073, 0x3fa36cc, 0x5ebcd2c,
0xb402f2f, 0x15c70bf, 0x1561925c, 0x5a26704, 0xda91e90, 0xcdc1c7f, 0x1ea12446, 0xe1ade1e, 0xec91f22,
0x26f7778, 0x566847e, 0xa0bec9e, 0x234f453, 0x1a31f21a, 0xd85e75c, 0x56c7109, 0xa267a00, 0xb57c050,
0x98fb57, 0xaa837cc, 0x60c0792, 0xcfa5e19, 0x61bab9e, 0x589e39b, 0xa324c5, 0x7d6dee7, 0x2976e4b,
0x1fc4124a, 0xa8c244b, 0x1ce86762, 0xcd61c7e, 0x1831c8e0, 0x75774e1, 0x1d96a5a9, 0x843a649, 0xc3ab0fa,
0x6e2e7d5, 0x7673a2a, 0x178b65e8, 0x4003e9b, 0x1a1f11c2, 0x7816ea, 0xf643e11, 0x58c43df, 0xf423fc2,
0x19633ffa, 0x891f2b2, 0x123c231c, 0x46add8c, 0x54700dd, 0x59e2b17, 0x172db40f, 0x83e277d, 0xb0dd609,
0xfd1da12, 0x35c6e52, 0x19ede20c, 0xd19e0c0, 0x97d0f40, 0xb015b19, 0x449e3f5, 0xe10c9e, 0x33ab581,
0x56a67ab, 0x577734d, 0x1dddc062, 0xc57b10d, 0x149b39d, 0x26a9e7b, 0xc35df9f, 0x48764cd, 0x76dbcca,
0xca4b366, 0xe9303ab, 0x1a7480e7, 0x57e9e81, 0x1e13eb50, 0xf466cf3, 0x6f16b20, 0x4ba3173, 0xc168c33,
0x15cb5439, 0x6a38e11, 0x73658bd, 0xb29564f, 0x3f6dc5b, 0x53b97e, 0x1322c4c0, 0x65dd7ff, 0x3a1e4f6,
0x14e614aa, 0x9246317, 0x1bc83aca, 0xad97eed, 0xd38ce4a, 0xf82b006, 0x341f077, 0xa6add89, 0x4894acd,
0x9f162d5, 0xf8410ef, 0x1b266a56, 0xd7f223, 0x3e0cb92, 0xe39b672, 0x6a2901a, 0x69a8556, 0x7e7c0,
0x9b7d8d3, 0x309a80, 0x1ad05f7f, 0xc2fb5dd, 0xcbfd41d, 0x9ceb638, 0x1051825c, 0xda0cf5b, 0x812e881,
0x6f35669, 0x6a56f2c, 0x1df8d184, 0x345820, 0x1477d477, 0x1645db1, 0xbe80c51, 0xc22be3e, 0xe35e65a,
0x1aeb7aa0, 0xc375315, 0xf67bc99, 0x7fdd7b9, 0x191fc1be, 0x61235d, 0x2c184e9, 0x1c5a839, 0x47a1e26,
0xb7cb456, 0x93e225d, 0x14f3c6ed, 0xccc1ac9, 0x17fe37f3, 0x4988989, 0x1a90c502, 0x2f32042, 0xa17769b,
0xafd8c7c, 0x8191c6e, 0x1dcdb237, 0x16200c0, 0x107b32a1, 0x66c08db, 0x10d06a02, 0x3fc93, 0x5620023,
0x16722b27, 0x68b5c59, 0x270fcfc, 0xfad0ecc, 0xe5de1c2, 0xeab466b, 0x2fc513c, 0x407f75c, 0xbaab133,
0x9705fe9, 0xb88b8e7, 0x734c993, 0x1e1ff8f, 0x19156970, 0xabd0f00, 0x10469ea7, 0x3293ac0, 0xcdc98aa,
0x1d843fd, 0xe14bfe8, 0x15be825f, 0x8b5212, 0xeb3fb67, 0x81cbd29, 0xbc62f16, 0x2b6fcc7, 0xf5a4e29,
0x13560b66, 0xc0b6ac2, 0x51ae690, 0xd41e271, 0xf3e9bd4, 0x1d70aab, 0x1029f72, 0x73e1c35, 0xee70fbc,
0xad81baf, 0x9ecc49a, 0x86c741e, 0xfe6be30, 0x176752e7, 0x23d416, 0x1f83de85, 0x27de188, 0x66f70b8,
0x181cd51f, 0x96b6e4c, 0x188f2335, 0xa5df759, 0x17a77eb6, 0xfeb0e73, 0x154ae914, 0x2f3ec51, 0x3826b59,
0xb91f17d, 0x1c72949, 0x1362bf0a, 0xe23fddf, 0xa5614b0, 0xf7d8f, 0x79061, 0x823d9d2, 0x8213f39,
0x1128ae0b, 0xd095d05, 0xb85c0c2, 0x1ecb2ef, 0x24ddc84, 0xe35e901, 0x18411a4a, 0xf5ddc3d, 0x3786689,
0x52260e8, 0x5ae3564, 0x542b10d, 0x8d93a45, 0x19952aa4, 0x996cc41, 0x1051a729, 0x4be3499, 0x52b23aa,
0x109f307e, 0x6f5b6bb, 0x1f84e1e7, 0x77a0cfa, 0x10c4df3f, 0x25a02ea, 0xb048035, 0xe31de66, 0xc6ecaa3,
0x28ea335, 0x2886024, 0x1372f020, 0xf55d35, 0x15e4684c, 0xf2a9e17, 0x1a4a7529, 0xcb7beb1, 0xb2a78a1,
0x1ab21f1f, 0x6361ccf, 0x6c9179d, 0xb135627, 0x1267b974, 0x4408bad, 0x1cbff658, 0xe3d6511, 0xc7d76f,
0x1cc7a69, 0xe7ee31b, 0x54fab4f, 0x2b914f, 0x1ad27a30, 0xcd3579e, 0xc50124c, 0x50daa90, 0xb13f72,
0xb06aa75, 0x70f5cc6, 0x1649e5aa, 0x84a5312, 0x329043c, 0x41c4011, 0x13d32411, 0xb04a838, 0xd760d2d,
0x1713b532, 0xbaa0c03, 0x84022ab, 0x6bcf5c1, 0x2f45379, 0x18ae070, 0x18c9e11e, 0x20bca9a, 0x66f496b,
0x3eef294, 0x67500d2, 0xd7f613c, 0x2dbbeb, 0xb741038, 0xe04133f, 0x1582968d, 0xbe985f7, 0x1acbc1a,
0x1a6a939f, 0x33e50f6, 0xd665ed4, 0xb4b7bd6, 0x1e5a3799, 0x6b33847, 0x17fa56ff, 0x65ef930, 0x21dc4a,
0x2b37659, 0x450fe17, 0xb357b65, 0xdf5efac, 0x15397bef, 0x9d35a7f, 0x112ac15f, 0x624e62e, 0xa90ae2f,
0x107eecd2, 0x1f69bbe, 0x77d6bce, 0x5741394, 0x13c684fc, 0x950c910, 0x725522b, 0xdc78583, 0x40eeabb,
0x1fde328a, 0xbd61d96, 0xd28c387, 0x9e77d89, 0x12550c40, 0x759cb7d, 0x367ef34, 0xae2a960, 0x91b8bdc,
0x93462a9, 0xf469ef, 0xb2e9aef, 0xd2ca771, 0x54e1f42, 0x7aaa49, 0x6316abb, 0x2413c8e, 0x5425bf9,
0x1bed3e3a, 0xf272274, 0x1f5e7326, 0x6416517, 0xea27072, 0x9cedea7, 0x6e7633, 0x7c91952, 0xd806dce,
0x8e2a7e1, 0xe421e1a, 0x418c9e1, 0x1dbc890, 0x1b395c36, 0xa1dc175, 0x1dc4ef73, 0x8956f34, 0xe4b5cf2,
0x1b0d3a18, 0x3194a36, 0x6c2641f, 0xe44124c, 0xa2f4eaa, 0xa8c25ba, 0xf927ed7, 0x627b614, 0x7371cca,
0xba16694, 0x417bc03, 0x7c0a7e3, 0x9c35c19, 0x1168a205, 0x8b6b00d, 0x10e3edc9, 0x9c19bf2, 0x5882229,
0x1b2b4162, 0xa5cef1a, 0x1543622b, 0x9bd433e, 0x364e04d, 0x7480792, 0x5c9b5b3, 0xe85ff25, 0x408ef57,
0x1814cfa4, 0x121b41b, 0xd248a0f, 0x3b05222, 0x39bb16a, 0xc75966d, 0xa038113, 0xa4a1769, 0x11fbc6c,
0x917e50e, 0xeec3da8, 0x169d6eac, 0x10c1699, 0xa416153, 0xf724912, 0x15cd60b7, 0x4acbad9, 0x5efc5fa,
0xf150ed7, 0x122b51, 0x1104b40a, 0xcb7f442, 0xfbb28ff, 0x6ac53ca, 0x196142cc, 0x7bf0fa9, 0x957651,
0x4e0f215, 0xed439f8, 0x3f46bd5, 0x5ace82f, 0x110916b6, 0x6db078, 0xffd7d57, 0xf2ecaac, 0xca86dec,
0x15d6b2da, 0x965ecc9, 0x1c92b4c2, 0x1f3811, 0x1cb080f5, 0x2d8b804, 0x19d1c12d, 0xf20bd46, 0x1951fa7,
0xa3656c3, 0x523a425, 0xfcd0692, 0xd44ddc8, 0x131f0f5b, 0xaf80e4a, 0xcd9fc74, 0x99bb618, 0x2db944c,
0xa673090, 0x1c210e1, 0x178c8d23, 0x1474383, 0x10b8743d, 0x985a55b, 0x2e74779, 0x576138, 0x9587927,
0x133130fa, 0xbe05516, 0x9f4d619, 0xbb62570, 0x99ec591, 0xd9468fe, 0x1d07782d, 0xfc72e0b, 0x701b298,
0x1863863b, 0x85954b8, 0x121a0c36, 0x9e7fedf, 0xf64b429, 0x9b9d71e, 0x14e2f5d8, 0xf858d3a, 0x942eea8,
0xda5b765, 0x6edafff, 0xa9d18cc, 0xc65e4ba, 0x1c747e86, 0xe4ea915, 0x1981d7a1, 0x8395659, 0x52ed4e2,
0x87d43b7, 0x37ab11b, 0x19d292ce, 0xf8d4692, 0x18c3053f, 0x8863e13, 0x4c146c0, 0x6bdf55a, 0x4e4457d,
0x16152289, 0xac78ec2, 0x1a59c5a2, 0x2028b97, 0x71c2d01, 0x295851f, 0x404747b, 0x878558d, 0x7d29aa4,
0x13d8341f, 0x8daefd7, 0x139c972d, 0x6b7ea75, 0xd4a9dde, 0xff163d8, 0x81d55d7, 0xa5bef68, 0xb7b30d8,
0xbe73d6f, 0xaa88141, 0xd976c81, 0x7e7a9cc, 0x18beb771, 0xd773cbd, 0x13f51951, 0x9d0c177, 0x1c49a78,
};
/* Field element operations: */
/* NON_ZERO_TO_ALL_ONES returns:
* 0xffffffff for 0 < x <= 2**31
* 0 for x == 0 or x > 2**31.
*
* x must be a u32 or an equivalent type such as limb. */
#define NON_ZERO_TO_ALL_ONES(x) ((((u32)(x) - 1) >> 31) - 1)
/* felem_reduce_carry adds a multiple of p in order to cancel |carry|,
* which is a term at 2**257.
*
* On entry: carry < 2**3, inout[0,2,...] < 2**29, inout[1,3,...] < 2**28.
* On exit: inout[0,2,..] < 2**30, inout[1,3,...] < 2**29. */
static void felem_reduce_carry(felem inout, limb carry) {
const u32 carry_mask = NON_ZERO_TO_ALL_ONES(carry);
inout[0] += carry << 1;
inout[3] += 0x10000000 & carry_mask;
/* carry < 2**3 thus (carry << 11) < 2**14 and we added 2**28 in the
* previous line therefore this doesn't underflow. */
inout[3] -= carry << 11;
inout[4] += (0x20000000 - 1) & carry_mask;
inout[5] += (0x10000000 - 1) & carry_mask;
inout[6] += (0x20000000 - 1) & carry_mask;
inout[6] -= carry << 22;
/* This may underflow if carry is non-zero but, if so, we'll fix it in the
* next line. */
inout[7] -= 1 & carry_mask;
inout[7] += carry << 25;
}
/* felem_sum sets out = in+in2.
*
* On entry, in[i]+in2[i] must not overflow a 32-bit word.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */
static void felem_sum(felem out, const felem in, const felem in2) {
limb carry = 0;
unsigned i;
for (i = 0;; i++) {
out[i] = in[i] + in2[i];
out[i] += carry;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
out[i] = in[i] + in2[i];
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
#define two31m3 (((limb)1) << 31) - (((limb)1) << 3)
#define two30m2 (((limb)1) << 30) - (((limb)1) << 2)
#define two30p13m2 (((limb)1) << 30) + (((limb)1) << 13) - (((limb)1) << 2)
#define two31m2 (((limb)1) << 31) - (((limb)1) << 2)
#define two31p24m2 (((limb)1) << 31) + (((limb)1) << 24) - (((limb)1) << 2)
#define two30m27m2 (((limb)1) << 30) - (((limb)1) << 27) - (((limb)1) << 2)
/* zero31 is 0 mod p. */
static const felem zero31 = { two31m3, two30m2, two31m2, two30p13m2, two31m2, two30m2, two31p24m2, two30m27m2, two31m2 };
/* felem_diff sets out = in-in2.
*
* On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
* in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_diff(felem out, const felem in, const felem in2) {
limb carry = 0;
unsigned i;
for (i = 0;; i++) {
out[i] = in[i] - in2[i];
out[i] += zero31[i];
out[i] += carry;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
out[i] = in[i] - in2[i];
out[i] += zero31[i];
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_reduce_degree sets out = tmp/R mod p where tmp contains 64-bit words
* with the same 29,28,... bit positions as an felem.
*
* The values in felems are in Montgomery form: x*R mod p where R = 2**257.
* Since we just multiplied two Montgomery values together, the result is
* x*y*R*R mod p. We wish to divide by R in order for the result also to be
* in Montgomery form.
*
* On entry: tmp[i] < 2**64
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29 */
static void felem_reduce_degree(felem out, u64 tmp[17]) {
/* The following table may be helpful when reading this code:
*
* Limb number: 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10...
* Width (bits): 29| 28| 29| 28| 29| 28| 29| 28| 29| 28| 29
* Start bit: 0 | 29| 57| 86|114|143|171|200|228|257|285
* (odd phase): 0 | 28| 57| 85|114|142|171|199|228|256|285 */
limb tmp2[18], carry, x, xMask;
unsigned i;
/* tmp contains 64-bit words with the same 29,28,29-bit positions as an
* felem. So the top of an element of tmp might overlap with another
* element two positions down. The following loop eliminates this
* overlap. */
tmp2[0] = (limb)(tmp[0] & kBottom29Bits);
/* In the following we use "(limb) tmp[x]" and "(limb) (tmp[x]>>32)" to try
* and hint to the compiler that it can do a single-word shift by selecting
* the right register rather than doing a double-word shift and truncating
* afterwards. */
tmp2[1] = ((limb) tmp[0]) >> 29;
tmp2[1] |= (((limb)(tmp[0] >> 32)) << 3) & kBottom28Bits;
tmp2[1] += ((limb) tmp[1]) & kBottom28Bits;
carry = tmp2[1] >> 28;
tmp2[1] &= kBottom28Bits;
for (i = 2; i < 17; i++) {
tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
tmp2[i] += ((limb)(tmp[i - 1])) >> 28;
tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 4) & kBottom29Bits;
tmp2[i] += ((limb) tmp[i]) & kBottom29Bits;
tmp2[i] += carry;
carry = tmp2[i] >> 29;
tmp2[i] &= kBottom29Bits;
i++;
if (i == 17)
break;
tmp2[i] = ((limb)(tmp[i - 2] >> 32)) >> 25;
tmp2[i] += ((limb)(tmp[i - 1])) >> 29;
tmp2[i] += (((limb)(tmp[i - 1] >> 32)) << 3) & kBottom28Bits;
tmp2[i] += ((limb) tmp[i]) & kBottom28Bits;
tmp2[i] += carry;
carry = tmp2[i] >> 28;
tmp2[i] &= kBottom28Bits;
}
tmp2[17] = ((limb)(tmp[15] >> 32)) >> 25;
tmp2[17] += ((limb)(tmp[16])) >> 29;
tmp2[17] += (((limb)(tmp[16] >> 32)) << 3);
tmp2[17] += carry;
/* Montgomery elimination of terms.
*
* Since R is 2**257, we can divide by R with a bitwise shift if we can
* ensure that the right-most 257 bits are all zero. We can make that true by
* adding multiplies of p without affecting the value.
*
* So we eliminate limbs from right to left. Since the bottom 29 bits of p
* are all ones, then by adding tmp2[0]*p to tmp2 we'll make tmp2[0] == 0.
* We can do that for 8 further limbs and then right shift to eliminate the
* extra factor of R. */
for (i = 0;; i += 2) {
tmp2[i + 1] += tmp2[i] >> 29;
x = tmp2[i] & kBottom29Bits;
xMask = NON_ZERO_TO_ALL_ONES(x);
tmp2[i] = 0;
/* The bounds calculations for this loop are tricky. Each iteration of
* the loop eliminates two words by adding values to words to their
* right.
*
* The following table contains the amounts added to each word (as an
* offset from the value of i at the top of the loop). The amounts are
* accounted for from the first and second half of the loop separately
* and are written as, for example, 28 to mean a value <2**28.
*
* Word: 3 4 5 6 7 8 9 10
* Added in top half: 28 11 29 21 29 28
* 28 29
* 29
* Added in bottom half: 29 10 28 21 28 28
* 29
*
* The value that is currently offset 7 will be offset 5 for the next
* iteration and then offset 3 for the iteration after that. Therefore
* the total value added will be the values added at 7, 5 and 3.
*
* The following table accumulates these values. The sums at the bottom
* are written as, for example, 29+28, to mean a value < 2**29+2**28.
*
* Word: 3 4 5 6 7 8 9 10 11 12 13
* 28 11 10 29 21 29 28 28 28 28 28
* 29 28 11 28 29 28 29 28 29 28
* 29 28 21 21 29 21 29 21
* 10 29 28 21 28 21 28
* 28 29 28 29 28 29 28
* 11 10 29 10 29 10
* 29 28 11 28 11
* 29 29
* --------------------------------------------
* 30+ 31+ 30+ 31+ 30+
* 28+ 29+ 28+ 29+ 21+
* 21+ 28+ 21+ 28+ 10
* 10 21+ 10 21+
* 11 11
*
* So the greatest amount is added to tmp2[10] and tmp2[12]. If
* tmp2[10/12] has an initial value of <2**29, then the maximum value
* will be < 2**31 + 2**30 + 2**28 + 2**21 + 2**11, which is < 2**32,
* as required. */
tmp2[i + 3] += (x << 10) & kBottom28Bits;
tmp2[i + 4] += (x >> 18);
tmp2[i + 6] += (x << 21) & kBottom29Bits;
tmp2[i + 7] += x >> 8;
/* At position 200, which is the starting bit position for word 7, we
* have a factor of 0xf000000 = 2**28 - 2**24. */
tmp2[i + 7] += 0x10000000 & xMask;
/* Word 7 is 28 bits wide, so the 2**28 term exactly hits word 8. */
tmp2[i + 8] += (x - 1) & xMask;
tmp2[i + 7] -= (x << 24) & kBottom28Bits;
tmp2[i + 8] -= x >> 4;
tmp2[i + 8] += 0x20000000 & xMask;
tmp2[i + 8] -= x;
tmp2[i + 8] += (x << 28) & kBottom29Bits;
tmp2[i + 9] += ((x >> 1) - 1) & xMask;
if (i+1 == NLIMBS)
break;
tmp2[i + 2] += tmp2[i + 1] >> 28;
x = tmp2[i + 1] & kBottom28Bits;
xMask = NON_ZERO_TO_ALL_ONES(x);
tmp2[i + 1] = 0;
tmp2[i + 4] += (x << 11) & kBottom29Bits;
tmp2[i + 5] += (x >> 18);
tmp2[i + 7] += (x << 21) & kBottom28Bits;
tmp2[i + 8] += x >> 7;
/* At position 199, which is the starting bit of the 8th word when
* dealing with a context starting on an odd word, we have a factor of
* 0x1e000000 = 2**29 - 2**25. Since we have not updated i, the 8th
* word from i+1 is i+8. */
tmp2[i + 8] += 0x20000000 & xMask;
tmp2[i + 9] += (x - 1) & xMask;
tmp2[i + 8] -= (x << 25) & kBottom29Bits;
tmp2[i + 9] -= x >> 4;
tmp2[i + 9] += 0x10000000 & xMask;
tmp2[i + 9] -= x;
tmp2[i + 10] += (x - 1) & xMask;
}
/* We merge the right shift with a carry chain. The words above 2**257 have
* widths of 28,29,... which we need to correct when copying them down. */
carry = 0;
for (i = 0; i < 8; i++) {
/* The maximum value of tmp2[i + 9] occurs on the first iteration and
* is < 2**30+2**29+2**28. Adding 2**29 (from tmp2[i + 10]) is
* therefore safe. */
out[i] = tmp2[i + 9];
out[i] += carry;
out[i] += (tmp2[i + 10] << 28) & kBottom29Bits;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
out[i] = tmp2[i + 9] >> 1;
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
out[8] = tmp2[17];
out[8] += carry;
carry = out[8] >> 29;
out[8] &= kBottom29Bits;
felem_reduce_carry(out, carry);
}
/* felem_square sets out=in*in.
*
* On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_square(felem out, const felem in) {
u64 tmp[17];
tmp[0] = ((u64) in[0]) * in[0];
tmp[1] = ((u64) in[0]) * (in[1] << 1);
tmp[2] = ((u64) in[0]) * (in[2] << 1) +
((u64) in[1]) * (in[1] << 1);
tmp[3] = ((u64) in[0]) * (in[3] << 1) +
((u64) in[1]) * (in[2] << 1);
tmp[4] = ((u64) in[0]) * (in[4] << 1) +
((u64) in[1]) * (in[3] << 2) + ((u64) in[2]) * in[2];
tmp[5] = ((u64) in[0]) * (in[5] << 1) + ((u64) in[1]) *
(in[4] << 1) + ((u64) in[2]) * (in[3] << 1);
tmp[6] = ((u64) in[0]) * (in[6] << 1) + ((u64) in[1]) *
(in[5] << 2) + ((u64) in[2]) * (in[4] << 1) +
((u64) in[3]) * (in[3] << 1);
tmp[7] = ((u64) in[0]) * (in[7] << 1) + ((u64) in[1]) *
(in[6] << 1) + ((u64) in[2]) * (in[5] << 1) +
((u64) in[3]) * (in[4] << 1);
/* tmp[8] has the greatest value of 2**61 + 2**60 + 2**61 + 2**60 + 2**60,
* which is < 2**64 as required. */
tmp[8] = ((u64) in[0]) * (in[8] << 1) + ((u64) in[1]) *
(in[7] << 2) + ((u64) in[2]) * (in[6] << 1) +
((u64) in[3]) * (in[5] << 2) + ((u64) in[4]) * in[4];
tmp[9] = ((u64) in[1]) * (in[8] << 1) + ((u64) in[2]) *
(in[7] << 1) + ((u64) in[3]) * (in[6] << 1) +
((u64) in[4]) * (in[5] << 1);
tmp[10] = ((u64) in[2]) * (in[8] << 1) + ((u64) in[3]) *
(in[7] << 2) + ((u64) in[4]) * (in[6] << 1) +
((u64) in[5]) * (in[5] << 1);
tmp[11] = ((u64) in[3]) * (in[8] << 1) + ((u64) in[4]) *
(in[7] << 1) + ((u64) in[5]) * (in[6] << 1);
tmp[12] = ((u64) in[4]) * (in[8] << 1) +
((u64) in[5]) * (in[7] << 2) + ((u64) in[6]) * in[6];
tmp[13] = ((u64) in[5]) * (in[8] << 1) +
((u64) in[6]) * (in[7] << 1);
tmp[14] = ((u64) in[6]) * (in[8] << 1) +
((u64) in[7]) * (in[7] << 1);
tmp[15] = ((u64) in[7]) * (in[8] << 1);
tmp[16] = ((u64) in[8]) * in[8];
felem_reduce_degree(out, tmp);
}
/* felem_mul sets out=in*in2.
*
* On entry: in[0,2,...] < 2**30, in[1,3,...] < 2**29 and
* in2[0,2,...] < 2**30, in2[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_mul(felem out, const felem in, const felem in2) {
u64 tmp[17];
tmp[0] = ((u64) in[0]) * in2[0];
tmp[1] = ((u64) in[0]) * (in2[1] << 0) +
((u64) in[1]) * (in2[0] << 0);
tmp[2] = ((u64) in[0]) * (in2[2] << 0) + ((u64) in[1]) *
(in2[1] << 1) + ((u64) in[2]) * (in2[0] << 0);
tmp[3] = ((u64) in[0]) * (in2[3] << 0) + ((u64) in[1]) *
(in2[2] << 0) + ((u64) in[2]) * (in2[1] << 0) +
((u64) in[3]) * (in2[0] << 0);
tmp[4] = ((u64) in[0]) * (in2[4] << 0) + ((u64) in[1]) *
(in2[3] << 1) + ((u64) in[2]) * (in2[2] << 0) +
((u64) in[3]) * (in2[1] << 1) +
((u64) in[4]) * (in2[0] << 0);
tmp[5] = ((u64) in[0]) * (in2[5] << 0) + ((u64) in[1]) *
(in2[4] << 0) + ((u64) in[2]) * (in2[3] << 0) +
((u64) in[3]) * (in2[2] << 0) + ((u64) in[4]) *
(in2[1] << 0) + ((u64) in[5]) * (in2[0] << 0);
tmp[6] = ((u64) in[0]) * (in2[6] << 0) + ((u64) in[1]) *
(in2[5] << 1) + ((u64) in[2]) * (in2[4] << 0) +
((u64) in[3]) * (in2[3] << 1) + ((u64) in[4]) *
(in2[2] << 0) + ((u64) in[5]) * (in2[1] << 1) +
((u64) in[6]) * (in2[0] << 0);
tmp[7] = ((u64) in[0]) * (in2[7] << 0) + ((u64) in[1]) *
(in2[6] << 0) + ((u64) in[2]) * (in2[5] << 0) +
((u64) in[3]) * (in2[4] << 0) + ((u64) in[4]) *
(in2[3] << 0) + ((u64) in[5]) * (in2[2] << 0) +
((u64) in[6]) * (in2[1] << 0) +
((u64) in[7]) * (in2[0] << 0);
/* tmp[8] has the greatest value but doesn't overflow. See logic in
* felem_square. */
tmp[8] = ((u64) in[0]) * (in2[8] << 0) + ((u64) in[1]) *
(in2[7] << 1) + ((u64) in[2]) * (in2[6] << 0) +
((u64) in[3]) * (in2[5] << 1) + ((u64) in[4]) *
(in2[4] << 0) + ((u64) in[5]) * (in2[3] << 1) +
((u64) in[6]) * (in2[2] << 0) + ((u64) in[7]) *
(in2[1] << 1) + ((u64) in[8]) * (in2[0] << 0);
tmp[9] = ((u64) in[1]) * (in2[8] << 0) + ((u64) in[2]) *
(in2[7] << 0) + ((u64) in[3]) * (in2[6] << 0) +
((u64) in[4]) * (in2[5] << 0) + ((u64) in[5]) *
(in2[4] << 0) + ((u64) in[6]) * (in2[3] << 0) +
((u64) in[7]) * (in2[2] << 0) +
((u64) in[8]) * (in2[1] << 0);
tmp[10] = ((u64) in[2]) * (in2[8] << 0) + ((u64) in[3]) *
(in2[7] << 1) + ((u64) in[4]) * (in2[6] << 0) +
((u64) in[5]) * (in2[5] << 1) + ((u64) in[6]) *
(in2[4] << 0) + ((u64) in[7]) * (in2[3] << 1) +
((u64) in[8]) * (in2[2] << 0);
tmp[11] = ((u64) in[3]) * (in2[8] << 0) + ((u64) in[4]) *
(in2[7] << 0) + ((u64) in[5]) * (in2[6] << 0) +
((u64) in[6]) * (in2[5] << 0) + ((u64) in[7]) *
(in2[4] << 0) + ((u64) in[8]) * (in2[3] << 0);
tmp[12] = ((u64) in[4]) * (in2[8] << 0) + ((u64) in[5]) *
(in2[7] << 1) + ((u64) in[6]) * (in2[6] << 0) +
((u64) in[7]) * (in2[5] << 1) +
((u64) in[8]) * (in2[4] << 0);
tmp[13] = ((u64) in[5]) * (in2[8] << 0) + ((u64) in[6]) *
(in2[7] << 0) + ((u64) in[7]) * (in2[6] << 0) +
((u64) in[8]) * (in2[5] << 0);
tmp[14] = ((u64) in[6]) * (in2[8] << 0) + ((u64) in[7]) *
(in2[7] << 1) + ((u64) in[8]) * (in2[6] << 0);
tmp[15] = ((u64) in[7]) * (in2[8] << 0) +
((u64) in[8]) * (in2[7] << 0);
tmp[16] = ((u64) in[8]) * (in2[8] << 0);
felem_reduce_degree(out, tmp);
}
static void felem_assign(felem out, const felem in) {
memcpy(out, in, sizeof(felem));
}
/* felem_inv calculates |out| = |in|^{-1}
*
* Based on Fermat's Little Theorem:
* a^p = a (mod p)
* a^{p-1} = 1 (mod p)
* a^{p-2} = a^{-1} (mod p)
*/
static void felem_inv(felem out, const felem in) {
felem ftmp, ftmp2;
/* each e_I will hold |in|^{2^I - 1} */
felem e2, e4, e8, e16, e32, e64;
unsigned i;
felem_square(ftmp, in); /* 2^1 */
felem_mul(ftmp, in, ftmp); /* 2^2 - 2^0 */
felem_assign(e2, ftmp);
felem_square(ftmp, ftmp); /* 2^3 - 2^1 */
felem_square(ftmp, ftmp); /* 2^4 - 2^2 */
felem_mul(ftmp, ftmp, e2); /* 2^4 - 2^0 */
felem_assign(e4, ftmp);
felem_square(ftmp, ftmp); /* 2^5 - 2^1 */
felem_square(ftmp, ftmp); /* 2^6 - 2^2 */
felem_square(ftmp, ftmp); /* 2^7 - 2^3 */
felem_square(ftmp, ftmp); /* 2^8 - 2^4 */
felem_mul(ftmp, ftmp, e4); /* 2^8 - 2^0 */
felem_assign(e8, ftmp);
for (i = 0; i < 8; i++) {
felem_square(ftmp, ftmp);
} /* 2^16 - 2^8 */
felem_mul(ftmp, ftmp, e8); /* 2^16 - 2^0 */
felem_assign(e16, ftmp);
for (i = 0; i < 16; i++) {
felem_square(ftmp, ftmp);
} /* 2^32 - 2^16 */
felem_mul(ftmp, ftmp, e16); /* 2^32 - 2^0 */
felem_assign(e32, ftmp);
for (i = 0; i < 32; i++) {
felem_square(ftmp, ftmp);
} /* 2^64 - 2^32 */
felem_assign(e64, ftmp);
felem_mul(ftmp, ftmp, in); /* 2^64 - 2^32 + 2^0 */
for (i = 0; i < 192; i++) {
felem_square(ftmp, ftmp);
} /* 2^256 - 2^224 + 2^192 */
felem_mul(ftmp2, e64, e32); /* 2^64 - 2^0 */
for (i = 0; i < 16; i++) {
felem_square(ftmp2, ftmp2);
} /* 2^80 - 2^16 */
felem_mul(ftmp2, ftmp2, e16); /* 2^80 - 2^0 */
for (i = 0; i < 8; i++) {
felem_square(ftmp2, ftmp2);
} /* 2^88 - 2^8 */
felem_mul(ftmp2, ftmp2, e8); /* 2^88 - 2^0 */
for (i = 0; i < 4; i++) {
felem_square(ftmp2, ftmp2);
} /* 2^92 - 2^4 */
felem_mul(ftmp2, ftmp2, e4); /* 2^92 - 2^0 */
felem_square(ftmp2, ftmp2); /* 2^93 - 2^1 */
felem_square(ftmp2, ftmp2); /* 2^94 - 2^2 */
felem_mul(ftmp2, ftmp2, e2); /* 2^94 - 2^0 */
felem_square(ftmp2, ftmp2); /* 2^95 - 2^1 */
felem_square(ftmp2, ftmp2); /* 2^96 - 2^2 */
felem_mul(ftmp2, ftmp2, in); /* 2^96 - 3 */
felem_mul(out, ftmp2, ftmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
}
/* felem_scalar_3 sets out=3*out.
*
* On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_scalar_3(felem out) {
limb carry = 0;
unsigned i;
for (i = 0;; i++) {
out[i] *= 3;
out[i] += carry;
carry = out[i] >> 29;
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
out[i] *= 3;
out[i] += carry;
carry = out[i] >> 28;
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_scalar_4 sets out=4*out.
*
* On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_scalar_4(felem out) {
limb carry = 0, next_carry;
unsigned i;
for (i = 0;; i++) {
next_carry = out[i] >> 27;
out[i] <<= 2;
out[i] &= kBottom29Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 29);
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
next_carry = out[i] >> 26;
out[i] <<= 2;
out[i] &= kBottom28Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 28);
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_scalar_8 sets out=8*out.
*
* On entry: out[0,2,...] < 2**30, out[1,3,...] < 2**29.
* On exit: out[0,2,...] < 2**30, out[1,3,...] < 2**29. */
static void felem_scalar_8(felem out) {
limb carry = 0, next_carry;
unsigned i;
for (i = 0;; i++) {
next_carry = out[i] >> 26;
out[i] <<= 3;
out[i] &= kBottom29Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 29);
out[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
next_carry = out[i] >> 25;
out[i] <<= 3;
out[i] &= kBottom28Bits;
out[i] += carry;
carry = next_carry + (out[i] >> 28);
out[i] &= kBottom28Bits;
}
felem_reduce_carry(out, carry);
}
/* felem_is_zero_vartime returns 1 iff |in| == 0. It takes a variable amount of
* time depending on the value of |in|. */
static char felem_is_zero_vartime(const felem in) {
limb carry;
int i;
limb tmp[NLIMBS];
felem_assign(tmp, in);
/* First, reduce tmp to a minimal form. */
do {
carry = 0;
for (i = 0;; i++) {
tmp[i] += carry;
carry = tmp[i] >> 29;
tmp[i] &= kBottom29Bits;
i++;
if (i == NLIMBS)
break;
tmp[i] += carry;
carry = tmp[i] >> 28;
tmp[i] &= kBottom28Bits;
}
felem_reduce_carry(tmp, carry);
} while (carry);
/* tmp < 2**257, so the only possible zero values are 0, p and 2p. */
return memcmp(tmp, kZero, sizeof(tmp)) == 0 ||
memcmp(tmp, kP, sizeof(tmp)) == 0 ||
memcmp(tmp, k2P, sizeof(tmp)) == 0;
}
/* Group operations:
*
* Elements of the elliptic curve group are represented in Jacobian
* coordinates: (x, y, z). An affine point (x', y') is x'=x/z**2, y'=y/z**3 in
* Jacobian form. */
/* point_double sets {x_out,y_out,z_out} = 2*{x,y,z}.
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l */
static void point_double(felem x_out, felem y_out, felem z_out, const felem x,
const felem y, const felem z) {
felem delta, gamma, alpha, beta, tmp, tmp2;
felem_square(delta, z);
felem_square(gamma, y);
felem_mul(beta, x, gamma);
felem_sum(tmp, x, delta);
felem_diff(tmp2, x, delta);
felem_mul(alpha, tmp, tmp2);
felem_scalar_3(alpha);
felem_sum(tmp, y, z);
felem_square(tmp, tmp);
felem_diff(tmp, tmp, gamma);
felem_diff(z_out, tmp, delta);
felem_scalar_4(beta);
felem_square(x_out, alpha);
felem_diff(x_out, x_out, beta);
felem_diff(x_out, x_out, beta);
felem_diff(tmp, beta, x_out);
felem_mul(tmp, alpha, tmp);
felem_square(tmp2, gamma);
felem_scalar_8(tmp2);
felem_diff(y_out, tmp, tmp2);
}
/* point_add_mixed sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,1}.
* (i.e. the second point is affine.)
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
*
* Note that this function does not handle P+P, infinity+P nor P+infinity
* correctly. */
static void point_add_mixed(felem x_out, felem y_out, felem z_out,
const felem x1, const felem y1, const felem z1,
const felem x2, const felem y2) {
felem z1z1, z1z1z1, s2, u2, h, i, j, r, rr, v, tmp;
felem_square(z1z1, z1);
felem_sum(tmp, z1, z1);
felem_mul(u2, x2, z1z1);
felem_mul(z1z1z1, z1, z1z1);
felem_mul(s2, y2, z1z1z1);
felem_diff(h, u2, x1);
felem_sum(i, h, h);
felem_square(i, i);
felem_mul(j, h, i);
felem_diff(r, s2, y1);
felem_sum(r, r, r);
felem_mul(v, x1, i);
felem_mul(z_out, tmp, h);
felem_square(rr, r);
felem_diff(x_out, rr, j);
felem_diff(x_out, x_out, v);
felem_diff(x_out, x_out, v);
felem_diff(tmp, v, x_out);
felem_mul(y_out, tmp, r);
felem_mul(tmp, y1, j);
felem_diff(y_out, y_out, tmp);
felem_diff(y_out, y_out, tmp);
}
/* point_add sets {x_out,y_out,z_out} = {x1,y1,z1} + {x2,y2,z2}.
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
*
* Note that this function does not handle P+P, infinity+P nor P+infinity
* correctly. */
static void point_add(felem x_out, felem y_out, felem z_out, const felem x1,
const felem y1, const felem z1, const felem x2,
const felem y2, const felem z2) {
felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
felem_square(z1z1, z1);
felem_square(z2z2, z2);
felem_mul(u1, x1, z2z2);
felem_sum(tmp, z1, z2);
felem_square(tmp, tmp);
felem_diff(tmp, tmp, z1z1);
felem_diff(tmp, tmp, z2z2);
felem_mul(z2z2z2, z2, z2z2);
felem_mul(s1, y1, z2z2z2);
felem_mul(u2, x2, z1z1);
felem_mul(z1z1z1, z1, z1z1);
felem_mul(s2, y2, z1z1z1);
felem_diff(h, u2, u1);
felem_sum(i, h, h);
felem_square(i, i);
felem_mul(j, h, i);
felem_diff(r, s2, s1);
felem_sum(r, r, r);
felem_mul(v, u1, i);
felem_mul(z_out, tmp, h);
felem_square(rr, r);
felem_diff(x_out, rr, j);
felem_diff(x_out, x_out, v);
felem_diff(x_out, x_out, v);
felem_diff(tmp, v, x_out);
felem_mul(y_out, tmp, r);
felem_mul(tmp, s1, j);
felem_diff(y_out, y_out, tmp);
felem_diff(y_out, y_out, tmp);
}
/* point_add_or_double_vartime sets {x_out,y_out,z_out} = {x1,y1,z1} +
* {x2,y2,z2}.
*
* See http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
*
* This function handles the case where {x1,y1,z1}={x2,y2,z2}. */
static void point_add_or_double_vartime(
felem x_out, felem y_out, felem z_out, const felem x1, const felem y1,
const felem z1, const felem x2, const felem y2, const felem z2) {
felem z1z1, z1z1z1, z2z2, z2z2z2, s1, s2, u1, u2, h, i, j, r, rr, v, tmp;
char x_equal, y_equal;
felem_square(z1z1, z1);
felem_square(z2z2, z2);
felem_mul(u1, x1, z2z2);
felem_sum(tmp, z1, z2);
felem_square(tmp, tmp);
felem_diff(tmp, tmp, z1z1);
felem_diff(tmp, tmp, z2z2);
felem_mul(z2z2z2, z2, z2z2);
felem_mul(s1, y1, z2z2z2);
felem_mul(u2, x2, z1z1);
felem_mul(z1z1z1, z1, z1z1);
felem_mul(s2, y2, z1z1z1);
felem_diff(h, u2, u1);
x_equal = felem_is_zero_vartime(h);
felem_sum(i, h, h);
felem_square(i, i);
felem_mul(j, h, i);
felem_diff(r, s2, s1);
y_equal = felem_is_zero_vartime(r);
if (x_equal && y_equal) {
point_double(x_out, y_out, z_out, x1, y1, z1);
return;
}
felem_sum(r, r, r);
felem_mul(v, u1, i);
felem_mul(z_out, tmp, h);
felem_square(rr, r);
felem_diff(x_out, rr, j);
felem_diff(x_out, x_out, v);
felem_diff(x_out, x_out, v);
felem_diff(tmp, v, x_out);
felem_mul(y_out, tmp, r);
felem_mul(tmp, s1, j);
felem_diff(y_out, y_out, tmp);
felem_diff(y_out, y_out, tmp);
}
/* copy_conditional sets out=in if mask = 0xffffffff in constant time.
*
* On entry: mask is either 0 or 0xffffffff. */
static void copy_conditional(felem out, const felem in, limb mask) {
int i;
for (i = 0; i < NLIMBS; i++) {
const limb tmp = mask & (in[i] ^ out[i]);
out[i] ^= tmp;
}
}
/* select_affine_point sets {out_x,out_y} to the index'th entry of table.
* On entry: index < 16, table[0] must be zero. */
static void select_affine_point(felem out_x, felem out_y, const limb* table,
limb index) {
limb i, j;
memset(out_x, 0, sizeof(felem));
memset(out_y, 0, sizeof(felem));
for (i = 1; i < 16; i++) {
limb mask = i ^ index;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < NLIMBS; j++, table++) {
out_x[j] |= *table & mask;
}
for (j = 0; j < NLIMBS; j++, table++) {
out_y[j] |= *table & mask;
}
}
}
/* select_jacobian_point sets {out_x,out_y,out_z} to the index'th entry of
* table. On entry: index < 16, table[0] must be zero. */
static void select_jacobian_point(felem out_x, felem out_y, felem out_z,
const limb* table, limb index) {
limb i, j;
memset(out_x, 0, sizeof(felem));
memset(out_y, 0, sizeof(felem));
memset(out_z, 0, sizeof(felem));
/* The implicit value at index 0 is all zero. We don't need to perform that
* iteration of the loop because we already set out_* to zero. */
table += 3 * NLIMBS;
// Hit all entries to obscure cache profiling.
for (i = 1; i < 16; i++) {
limb mask = i ^ index;
mask |= mask >> 2;
mask |= mask >> 1;
mask &= 1;
mask--;
for (j = 0; j < NLIMBS; j++, table++) {
out_x[j] |= *table & mask;
}
for (j = 0; j < NLIMBS; j++, table++) {
out_y[j] |= *table & mask;
}
for (j = 0; j < NLIMBS; j++, table++) {
out_z[j] |= *table & mask;
}
}
}
/* scalar_base_mult sets {nx,ny,nz} = scalar*G where scalar is a little-endian
* number. Note that the value of scalar must be less than the order of the
* group. */
static void scalar_base_mult(felem nx, felem ny, felem nz,
const p256_int* scalar) {
int i, j;
limb n_is_infinity_mask = -1, p_is_noninfinite_mask, mask;
u32 table_offset;
felem px, py;
felem tx, ty, tz;
memset(nx, 0, sizeof(felem));
memset(ny, 0, sizeof(felem));
memset(nz, 0, sizeof(felem));
/* The loop adds bits at positions 0, 64, 128 and 192, followed by
* positions 32,96,160 and 224 and does this 32 times. */
for (i = 0; i < 32; i++) {
if (i) {
point_double(nx, ny, nz, nx, ny, nz);
}
table_offset = 0;
for (j = 0; j <= 32; j += 32) {
char bit0 = p256_get_bit(scalar, 31 - i + j);
char bit1 = p256_get_bit(scalar, 95 - i + j);
char bit2 = p256_get_bit(scalar, 159 - i + j);
char bit3 = p256_get_bit(scalar, 223 - i + j);
limb index = bit0 | (bit1 << 1) | (bit2 << 2) | (bit3 << 3);
select_affine_point(px, py, kPrecomputed + table_offset, index);
table_offset += 30 * NLIMBS;
/* Since scalar is less than the order of the group, we know that
* {nx,ny,nz} != {px,py,1}, unless both are zero, which we handle
* below. */
point_add_mixed(tx, ty, tz, nx, ny, nz, px, py);
/* The result of point_add_mixed is incorrect if {nx,ny,nz} is zero
* (a.k.a. the point at infinity). We handle that situation by
* copying the point from the table. */
copy_conditional(nx, px, n_is_infinity_mask);
copy_conditional(ny, py, n_is_infinity_mask);
copy_conditional(nz, kOne, n_is_infinity_mask);
/* Equally, the result is also wrong if the point from the table is
* zero, which happens when the index is zero. We handle that by
* only copying from {tx,ty,tz} to {nx,ny,nz} if index != 0. */
p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
copy_conditional(nx, tx, mask);
copy_conditional(ny, ty, mask);
copy_conditional(nz, tz, mask);
/* If p was not zero, then n is now non-zero. */
n_is_infinity_mask &= ~p_is_noninfinite_mask;
}
}
}
/* point_to_affine converts a Jacobian point to an affine point. If the input
* is the point at infinity then it returns (0, 0) in constant time. */
static void point_to_affine(felem x_out, felem y_out, const felem nx,
const felem ny, const felem nz) {
felem z_inv, z_inv_sq;
felem_inv(z_inv, nz);
felem_square(z_inv_sq, z_inv);
felem_mul(x_out, nx, z_inv_sq);
felem_mul(z_inv, z_inv, z_inv_sq);
felem_mul(y_out, ny, z_inv);
}
/* scalar_base_mult sets {nx,ny,nz} = scalar*{x,y}. */
static void scalar_mult(felem nx, felem ny, felem nz, const felem x,
const felem y, const p256_int* scalar) {
int i;
felem px, py, pz, tx, ty, tz;
felem precomp[16][3];
limb n_is_infinity_mask, index, p_is_noninfinite_mask, mask;
/* We precompute 0,1,2,... times {x,y}. */
memset(precomp, 0, sizeof(felem) * 3);
memcpy(&precomp[1][0], x, sizeof(felem));
memcpy(&precomp[1][1], y, sizeof(felem));
memcpy(&precomp[1][2], kOne, sizeof(felem));
for (i = 2; i < 16; i += 2) {
point_double(precomp[i][0], precomp[i][1], precomp[i][2],
precomp[i / 2][0], precomp[i / 2][1], precomp[i / 2][2]);
point_add_mixed(precomp[i + 1][0], precomp[i + 1][1], precomp[i + 1][2],
precomp[i][0], precomp[i][1], precomp[i][2], x, y);
}
memset(nx, 0, sizeof(felem));
memset(ny, 0, sizeof(felem));
memset(nz, 0, sizeof(felem));
n_is_infinity_mask = -1;
/* We add in a window of four bits each iteration and do this 64 times. */
for (i = 0; i < 256; i += 4) {
if (i) {
point_double(nx, ny, nz, nx, ny, nz);
point_double(nx, ny, nz, nx, ny, nz);
point_double(nx, ny, nz, nx, ny, nz);
point_double(nx, ny, nz, nx, ny, nz);
}
index = (p256_get_bit(scalar, 255 - i - 0) << 3) |
(p256_get_bit(scalar, 255 - i - 1) << 2) |
(p256_get_bit(scalar, 255 - i - 2) << 1) |
p256_get_bit(scalar, 255 - i - 3);
/* See the comments in scalar_base_mult about handling infinities. */
select_jacobian_point(px, py, pz, precomp[0][0], index);
point_add(tx, ty, tz, nx, ny, nz, px, py, pz);
copy_conditional(nx, px, n_is_infinity_mask);
copy_conditional(ny, py, n_is_infinity_mask);
copy_conditional(nz, pz, n_is_infinity_mask);
p_is_noninfinite_mask = NON_ZERO_TO_ALL_ONES(index);
mask = p_is_noninfinite_mask & ~n_is_infinity_mask;
copy_conditional(nx, tx, mask);
copy_conditional(ny, ty, mask);
copy_conditional(nz, tz, mask);
n_is_infinity_mask &= ~p_is_noninfinite_mask;
}
}
#define kRDigits {2, 0, 0, 0xfffffffe, 0xffffffff, 0xffffffff, 0xfffffffd, 1} // 2^257 mod p256.p
#define kRInvDigits {0x80000000, 1, 0xffffffff, 0, 0x80000001, 0xfffffffe, 1, 0x7fffffff} // 1 / 2^257 mod p256.p
static const p256_int kR = { kRDigits };
static const p256_int kRInv = { kRInvDigits };
/* to_montgomery sets out = R*in. */
static void to_montgomery(felem out, const p256_int* in) {
p256_int in_shifted;
int i;
p256_init(&in_shifted);
p256_modmul(&SECP256r1_p, in, 0, &kR, &in_shifted);
for (i = 0; i < NLIMBS; i++) {
if ((i & 1) == 0) {
out[i] = P256_DIGIT(&in_shifted, 0) & kBottom29Bits;
p256_shr(&in_shifted, 29, &in_shifted);
} else {
out[i] = P256_DIGIT(&in_shifted, 0) & kBottom28Bits;
p256_shr(&in_shifted, 28, &in_shifted);
}
}
p256_clear(&in_shifted);
}
/* from_montgomery sets out=in/R. */
static void from_montgomery(p256_int* out, const felem in) {
p256_int result, tmp;
int i, top;
p256_init(&result);
p256_init(&tmp);
p256_add_d(&tmp, in[NLIMBS - 1], &result);
for (i = NLIMBS - 2; i >= 0; i--) {
if ((i & 1) == 0) {
top = p256_shl(&result, 29, &tmp);
} else {
top = p256_shl(&result, 28, &tmp);
}
top |= p256_add_d(&tmp, in[i], &result);
}
p256_modmul(&SECP256r1_p, &kRInv, top, &result, out);
p256_clear(&result);
p256_clear(&tmp);
}
/* p256_base_point_mul sets {out_x,out_y} = nG, where n is < the
* order of the group. */
void p256_base_point_mul(const p256_int* n, p256_int* out_x, p256_int* out_y) {
felem x, y, z;
scalar_base_mult(x, y, z, n);
{
felem x_affine, y_affine;
point_to_affine(x_affine, y_affine, x, y, z);
from_montgomery(out_x, x_affine);
from_montgomery(out_y, y_affine);
}
}
/* p256_points_mul_vartime sets {out_x,out_y} = n1*G + n2*{in_x,in_y}, where
* n1 and n2 are < the order of the group.
*
* As indicated by the name, this function operates in variable time. This
* is safe because it's used for signature validation which doesn't deal
* with secrets. */
void p256_points_mul_vartime(
const p256_int* n1, const p256_int* n2, const p256_int* in_x,
const p256_int* in_y, p256_int* out_x, p256_int* out_y) {
felem x1, y1, z1, x2, y2, z2, px, py;
/* If both scalars are zero, then the result is the point at infinity. */
if (p256_is_zero(n1) != 0 && p256_is_zero(n2) != 0) {
p256_clear(out_x);
p256_clear(out_y);
return;
}
to_montgomery(px, in_x);
to_montgomery(py, in_y);
scalar_base_mult(x1, y1, z1, n1);
scalar_mult(x2, y2, z2, px, py, n2);
if (p256_is_zero(n2) != 0) {
/* If n2 == 0, then {x2,y2,z2} is zero and the result is just
* {x1,y1,z1}. */
} else if (p256_is_zero(n1) != 0) {
/* If n1 == 0, then {x1,y1,z1} is zero and the result is just
* {x2,y2,z2}. */
memcpy(x1, x2, sizeof(x2));
memcpy(y1, y2, sizeof(y2));
memcpy(z1, z2, sizeof(z2));
} else {
/* This function handles the case where {x1,y1,z1} == {x2,y2,z2}. */
point_add_or_double_vartime(x1, y1, z1, x1, y1, z1, x2, y2, z2);
}
point_to_affine(px, py, x1, y1, z1);
from_montgomery(out_x, px);
from_montgomery(out_y, py);
}
/*
* Copyright 2013 The Android Open Source Project
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Google Inc. nor the names of its contributors may
* be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
* EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <string.h>
#include "mincrypt/p256_ecdsa.h"
#include "mincrypt/p256.h"
int p256_ecdsa_verify(const p256_int* key_x, const p256_int* key_y,
const p256_int* message,
const p256_int* r, const p256_int* s) {
p256_int u, v;
// Check public key.
if (!p256_is_valid_point(key_x, key_y)) return 0;
// Check r and s are != 0 % n.
p256_mod(&SECP256r1_n, r, &u);
p256_mod(&SECP256r1_n, s, &v);
if (p256_is_zero(&u) || p256_is_zero(&v)) return 0;
p256_modinv_vartime(&SECP256r1_n, s, &v);
p256_modmul(&SECP256r1_n, message, 0, &v, &u); // message / s % n
p256_modmul(&SECP256r1_n, r, 0, &v, &v); // r / s % n
p256_points_mul_vartime(&u, &v,
key_x, key_y,
&u, &v);
p256_mod(&SECP256r1_n, &u, &u); // (x coord % p) % n
return p256_cmp(r, &u) == 0;
}
/* rsa.c
**
** Copyright 2012, The Android Open Source Project
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of Google Inc. nor the names of its contributors may
** be used to endorse or promote products derived from this software
** without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "mincrypt/rsa.h"
#include "mincrypt/sha.h"
#include "mincrypt/sha256.h"
// a[] -= mod
static void subM(const RSAPublicKey* key,
uint32_t* a) {
int64_t A = 0;
int i;
for (i = 0; i < key->len; ++i) {
A += (uint64_t)a[i] - key->n[i];
a[i] = (uint32_t)A;
A >>= 32;
}
}
// return a[] >= mod
static int geM(const RSAPublicKey* key,
const uint32_t* a) {
int i;
for (i = key->len; i;) {
--i;
if (a[i] < key->n[i]) return 0;
if (a[i] > key->n[i]) return 1;
}
return 1; // equal
}
// montgomery c[] += a * b[] / R % mod
static void montMulAdd(const RSAPublicKey* key,
uint32_t* c,
const uint32_t a,
const uint32_t* b) {
uint64_t A = (uint64_t)a * b[0] + c[0];
uint32_t d0 = (uint32_t)A * key->n0inv;
uint64_t B = (uint64_t)d0 * key->n[0] + (uint32_t)A;
int i;
for (i = 1; i < key->len; ++i) {
A = (A >> 32) + (uint64_t)a * b[i] + c[i];
B = (B >> 32) + (uint64_t)d0 * key->n[i] + (uint32_t)A;
c[i - 1] = (uint32_t)B;
}
A = (A >> 32) + (B >> 32);
c[i - 1] = (uint32_t)A;
if (A >> 32) {
subM(key, c);
}
}
// montgomery c[] = a[] * b[] / R % mod
static void montMul(const RSAPublicKey* key,
uint32_t* c,
const uint32_t* a,
const uint32_t* b) {
int i;
for (i = 0; i < key->len; ++i) {
c[i] = 0;
}
for (i = 0; i < key->len; ++i) {
montMulAdd(key, c, a[i], b);
}
}
// In-place public exponentiation.
// Input and output big-endian byte array in inout.
static void modpow(const RSAPublicKey* key,
uint8_t* inout) {
uint32_t a[RSANUMWORDS];
uint32_t aR[RSANUMWORDS];
uint32_t aaR[RSANUMWORDS];
uint32_t* aaa = 0;
int i;
// Convert from big endian byte array to little endian word array.
for (i = 0; i < key->len; ++i) {
uint32_t tmp =
(inout[((key->len - 1 - i) * 4) + 0] << 24) |
(inout[((key->len - 1 - i) * 4) + 1] << 16) |
(inout[((key->len - 1 - i) * 4) + 2] << 8) |
(inout[((key->len - 1 - i) * 4) + 3] << 0);
a[i] = tmp;
}
if (key->exponent == 65537) {
aaa = aaR; // Re-use location.
montMul(key, aR, a, key->rr); // aR = a * RR / R mod M
for (i = 0; i < 16; i += 2) {
montMul(key, aaR, aR, aR); // aaR = aR * aR / R mod M
montMul(key, aR, aaR, aaR); // aR = aaR * aaR / R mod M
}
montMul(key, aaa, aR, a); // aaa = aR * a / R mod M
} else if (key->exponent == 3) {
aaa = aR; // Re-use location.
montMul(key, aR, a, key->rr); /* aR = a * RR / R mod M */
montMul(key, aaR, aR, aR); /* aaR = aR * aR / R mod M */
montMul(key, aaa, aaR, a); /* aaa = aaR * a / R mod M */
}
// Make sure aaa < mod; aaa is at most 1x mod too large.
if (geM(key, aaa)) {
subM(key, aaa);
}
// Convert to bigendian byte array
for (i = key->len - 1; i >= 0; --i) {
uint32_t tmp = aaa[i];
*inout++ = tmp >> 24;
*inout++ = tmp >> 16;
*inout++ = tmp >> 8;
*inout++ = tmp >> 0;
}
}
// Expected PKCS1.5 signature padding bytes, for a keytool RSA signature.
// Has the 0-length optional parameter encoded in the ASN1 (as opposed to the
// other flavor which omits the optional parameter entirely). This code does not
// accept signatures without the optional parameter.
/*
static const uint8_t sha_padding[RSANUMBYTES] = {
0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x21, 0x30,
0x09, 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a,
0x05, 0x00, 0x04, 0x14,
// 20 bytes of hash go here.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
};
*/
// SHA-1 of PKCS1.5 signature sha_padding for 2048 bit, as above.
// At the location of the bytes of the hash all 00 are hashed.
static const uint8_t kExpectedPadShaRsa2048[SHA_DIGEST_SIZE] = {
0xdc, 0xbd, 0xbe, 0x42, 0xd5, 0xf5, 0xa7, 0x2e,
0x6e, 0xfc, 0xf5, 0x5d, 0xaf, 0x9d, 0xea, 0x68,
0x7c, 0xfb, 0xf1, 0x67
};
/*
static const uint8_t sha256_padding[RSANUMBYTES] = {
0x00, 0x01, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0x00, 0x30, 0x31, 0x30,
0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, 0x65,
0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20,
// 32 bytes of hash go here.
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
};
*/
// SHA-256 of PKCS1.5 signature sha256_padding for 2048 bit, as above.
// At the location of the bytes of the hash all 00 are hashed.
static const uint8_t kExpectedPadSha256Rsa2048[SHA256_DIGEST_SIZE] = {
0xab, 0x28, 0x8d, 0x8a, 0xd7, 0xd9, 0x59, 0x92,
0xba, 0xcc, 0xf8, 0x67, 0x20, 0xe1, 0x15, 0x2e,
0x39, 0x8d, 0x80, 0x36, 0xd6, 0x6f, 0xf0, 0xfd,
0x90, 0xe8, 0x7d, 0x8b, 0xe1, 0x7c, 0x87, 0x59,
};
// Verify a 2048-bit RSA PKCS1.5 signature against an expected hash.
// Both e=3 and e=65537 are supported. hash_len may be
// SHA_DIGEST_SIZE (== 20) to indicate a SHA-1 hash, or
// SHA256_DIGEST_SIZE (== 32) to indicate a SHA-256 hash. No other
// values are supported.
//
// Returns 1 on successful verification, 0 on failure.
int RSA_verify(const RSAPublicKey *key,
const uint8_t *signature,
const int len,
const uint8_t *hash,
const int hash_len) {
uint8_t buf[RSANUMBYTES];
int i;
const uint8_t* padding_hash;
if (key->len != RSANUMWORDS) {
return 0; // Wrong key passed in.
}
if (len != sizeof(buf)) {
return 0; // Wrong input length.
}
if (hash_len != SHA_DIGEST_SIZE &&
hash_len != SHA256_DIGEST_SIZE) {
return 0; // Unsupported hash.
}
if (key->exponent != 3 && key->exponent != 65537) {
return 0; // Unsupported exponent.
}
for (i = 0; i < len; ++i) { // Copy input to local workspace.
buf[i] = signature[i];
}
modpow(key, buf); // In-place exponentiation.
// Xor sha portion, so it all becomes 00 iff equal.
for (i = len - hash_len; i < len; ++i) {
buf[i] ^= *hash++;
}
// Hash resulting buf, in-place.
switch (hash_len) {
case SHA_DIGEST_SIZE:
padding_hash = kExpectedPadShaRsa2048;
SHA_hash(buf, len, buf);
break;
case SHA256_DIGEST_SIZE:
padding_hash = kExpectedPadSha256Rsa2048;
SHA256_hash(buf, len, buf);
break;
default:
return 0;
}
// Compare against expected hash value.
for (i = 0; i < hash_len; ++i) {
if (buf[i] != padding_hash[i]) {
return 0;
}
}
return 1; // All checked out OK.
}
/* sha.c
**
** Copyright 2013, The Android Open Source Project
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of Google Inc. nor the names of its contributors may
** be used to endorse or promote products derived from this software
** without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Optimized for minimal code size.
#include "mincrypt/sha.h"
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#define rol(bits, value) (((value) << (bits)) | ((value) >> (32 - (bits))))
static void SHA1_Transform(SHA_CTX* ctx) {
uint32_t W[80];
uint32_t A, B, C, D, E;
uint8_t* p = ctx->buf;
int t;
for(t = 0; t < 16; ++t) {
uint32_t tmp = *p++ << 24;
tmp |= *p++ << 16;
tmp |= *p++ << 8;
tmp |= *p++;
W[t] = tmp;
}
for(; t < 80; t++) {
W[t] = rol(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]);
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
for(t = 0; t < 80; t++) {
uint32_t tmp = rol(5,A) + E + W[t];
if (t < 20)
tmp += (D^(B&(C^D))) + 0x5A827999;
else if ( t < 40)
tmp += (B^C^D) + 0x6ED9EBA1;
else if ( t < 60)
tmp += ((B&C)|(D&(B|C))) + 0x8F1BBCDC;
else
tmp += (B^C^D) + 0xCA62C1D6;
E = D;
D = C;
C = rol(30,B);
B = A;
A = tmp;
}
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
}
static const HASH_VTAB SHA_VTAB = {
SHA_init,
SHA_update,
SHA_final,
SHA_hash,
SHA_DIGEST_SIZE
};
void SHA_init(SHA_CTX* ctx) {
ctx->f = &SHA_VTAB;
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
ctx->count = 0;
}
void SHA_update(SHA_CTX* ctx, const void* data, int len) {
int i = (int) (ctx->count & 63);
const uint8_t* p = (const uint8_t*)data;
ctx->count += len;
while (len--) {
ctx->buf[i++] = *p++;
if (i == 64) {
SHA1_Transform(ctx);
i = 0;
}
}
}
const uint8_t* SHA_final(SHA_CTX* ctx) {
uint8_t *p = ctx->buf;
uint64_t cnt = ctx->count * 8;
int i;
SHA_update(ctx, (uint8_t*)"\x80", 1);
while ((ctx->count & 63) != 56) {
SHA_update(ctx, (uint8_t*)"\0", 1);
}
for (i = 0; i < 8; ++i) {
uint8_t tmp = (uint8_t) (cnt >> ((7 - i) * 8));
SHA_update(ctx, &tmp, 1);
}
for (i = 0; i < 5; i++) {
uint32_t tmp = ctx->state[i];
*p++ = tmp >> 24;
*p++ = tmp >> 16;
*p++ = tmp >> 8;
*p++ = tmp >> 0;
}
return ctx->buf;
}
/* Convenience function */
const uint8_t* SHA_hash(const void* data, int len, uint8_t* digest) {
SHA_CTX ctx;
SHA_init(&ctx);
SHA_update(&ctx, data, len);
memcpy(digest, SHA_final(&ctx), SHA_DIGEST_SIZE);
return digest;
}
/* sha256.c
**
** Copyright 2013, The Android Open Source Project
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions are met:
** * Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** * Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** * Neither the name of Google Inc. nor the names of its contributors may
** be used to endorse or promote products derived from this software
** without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY Google Inc. ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
** EVENT SHALL Google Inc. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
** PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
** OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
** WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
** OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
** ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Optimized for minimal code size.
#include "mincrypt/sha256.h"
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#define ror(value, bits) (((value) >> (bits)) | ((value) << (32 - (bits))))
#define shr(value, bits) ((value) >> (bits))
static const uint32_t K[64] = {
0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5,
0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3,
0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc,
0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7,
0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13,
0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3,
0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5,
0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208,
0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2 };
static void SHA256_Transform(SHA256_CTX* ctx) {
uint32_t W[64];
uint32_t A, B, C, D, E, F, G, H;
uint8_t* p = ctx->buf;
int t;
for(t = 0; t < 16; ++t) {
uint32_t tmp = *p++ << 24;
tmp |= *p++ << 16;
tmp |= *p++ << 8;
tmp |= *p++;
W[t] = tmp;
}
for(; t < 64; t++) {
uint32_t s0 = ror(W[t-15], 7) ^ ror(W[t-15], 18) ^ shr(W[t-15], 3);
uint32_t s1 = ror(W[t-2], 17) ^ ror(W[t-2], 19) ^ shr(W[t-2], 10);
W[t] = W[t-16] + s0 + W[t-7] + s1;
}
A = ctx->state[0];
B = ctx->state[1];
C = ctx->state[2];
D = ctx->state[3];
E = ctx->state[4];
F = ctx->state[5];
G = ctx->state[6];
H = ctx->state[7];
for(t = 0; t < 64; t++) {
uint32_t s0 = ror(A, 2) ^ ror(A, 13) ^ ror(A, 22);
uint32_t maj = (A & B) ^ (A & C) ^ (B & C);
uint32_t t2 = s0 + maj;
uint32_t s1 = ror(E, 6) ^ ror(E, 11) ^ ror(E, 25);
uint32_t ch = (E & F) ^ ((~E) & G);
uint32_t t1 = H + s1 + ch + K[t] + W[t];
H = G;
G = F;
F = E;
E = D + t1;
D = C;
C = B;
B = A;
A = t1 + t2;
}
ctx->state[0] += A;
ctx->state[1] += B;
ctx->state[2] += C;
ctx->state[3] += D;
ctx->state[4] += E;
ctx->state[5] += F;
ctx->state[6] += G;
ctx->state[7] += H;
}
static const HASH_VTAB SHA256_VTAB = {
SHA256_init,
SHA256_update,
SHA256_final,
SHA256_hash,
SHA256_DIGEST_SIZE
};
void SHA256_init(SHA256_CTX* ctx) {
ctx->f = &SHA256_VTAB;
ctx->state[0] = 0x6a09e667;
ctx->state[1] = 0xbb67ae85;
ctx->state[2] = 0x3c6ef372;
ctx->state[3] = 0xa54ff53a;
ctx->state[4] = 0x510e527f;
ctx->state[5] = 0x9b05688c;
ctx->state[6] = 0x1f83d9ab;
ctx->state[7] = 0x5be0cd19;
ctx->count = 0;
}
void SHA256_update(SHA256_CTX* ctx, const void* data, int len) {
int i = (int) (ctx->count & 63);
const uint8_t* p = (const uint8_t*)data;
ctx->count += len;
while (len--) {
ctx->buf[i++] = *p++;
if (i == 64) {
SHA256_Transform(ctx);
i = 0;
}
}
}
const uint8_t* SHA256_final(SHA256_CTX* ctx) {
uint8_t *p = ctx->buf;
uint64_t cnt = ctx->count * 8;
int i;
SHA256_update(ctx, (uint8_t*)"\x80", 1);
while ((ctx->count & 63) != 56) {
SHA256_update(ctx, (uint8_t*)"\0", 1);
}
for (i = 0; i < 8; ++i) {
uint8_t tmp = (uint8_t) (cnt >> ((7 - i) * 8));
SHA256_update(ctx, &tmp, 1);
}
for (i = 0; i < 8; i++) {
uint32_t tmp = ctx->state[i];
*p++ = tmp >> 24;
*p++ = tmp >> 16;
*p++ = tmp >> 8;
*p++ = tmp >> 0;
}
return ctx->buf;
}
/* Convenience function */
const uint8_t* SHA256_hash(const void* data, int len, uint8_t* digest) {
SHA256_CTX ctx;
SHA256_init(&ctx);
SHA256_update(&ctx, data, len);
memcpy(digest, SHA256_final(&ctx), SHA256_DIGEST_SIZE);
return digest;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment