ARM' Architecture Reference Manual
ARMv8, for ARMv8-A architecture profile

Beta

ARM

Copyright © 2013, 2014 ARM Limited. All rights reserved.
ARM DDI 0487A.e (ID121714)

ARM Architecture Reference Manual
ARMvS, for ARMv8-A architecture profile

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Release Information

The following releases of this document have been made.

Release history

Date Issue Confidentiality Change

30 April 2013 Aa-1l Confidential-Beta Draft Beta draft of first issue, limited circulation

12 June 2013 A.a-2 Confidential-Beta Draft Second beta draft of first issue, limited circulation
04 September 2013 Aa Non-Confidential Beta Beta release.

24 December 3013 Ab Non-Confidential Beta Second beta release.

18 July 2014 Ac Non-Confidential Beta Third beta release.

09 October 2014 Ad Non-Confidential Beta Fourth beta release.

17 December 2014 Ae Non-Confidential Beta Fifth beta release.

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained
in this document may be protected by one or more patents or pending patent applications. No part of this document may be
reproduced in any form by any means without the express prior written permission of ARM Limited (“ARM”). No license,
express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless
specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use
the information for the purposes of determining whether implementations infringe any patents.

THIS DOCUMENT IS PROVIDED “AS IS”. ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES,
EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR
PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to,
and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or
other rights.

This document may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR
CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure
of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof
is not exported, directly or indirectly, in violation of such export laws. Use of the word “partner” in reference to ARM’s customers
is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document
at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement specifically
covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of
these terms.

Words and logos marked with ® or ™ are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or
elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective
owners. You must follow the ARM trademark usage guidelines http: //www.arm.com/about/trademark-usage-guidelines.php.

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

This document is Non-Confidential but any disclosure by you is subject to you providing the recipient the conditions set out in
this notice and procuring the acceptance by the recipient of the conditions set out in this notice.

Copyright © 2013, 2014 ARM Limited or its affiliates. All rights reserved.
ARM Limited. Company 02557590 registered in England.
110 Fulbourn Road, Cambridge, England CB1 9NJ.

LES-PRE-20327
In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Note

. The term ARM can refer to versions of the ARM architecture, for example ARMv8 refers to version 8 of the ARM
architecture. The context makes it clear when the term is used in this way.

. This document describes only the ARMv8-A architecture profile. For the behaviors required by the ARMv7-A and
ARMVT7-R architecture profiles, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

Web Address

http://www.arm.com

Limitations of issue A.e

This issue A.e of the ARMv8 Architecture Reference Manual contains many improvements and corrections. However, as
indicated by its beta status, it remains work-in-progress. VValidation of this document has identified the following issues that ARM
will address in the next issue:

. Compared to changes made in issue A.d:

— The ARM Generic Interrupt Controller (GICv3) CPU interface register descriptions in Chapter D7 AArch64
System Register Descriptions and Chapter G6 AArch32 System Register Descriptions have been updated
significantly, but are still work-in-progress, and remain as alpha quality and subject to change. Contact ARM if you
require more information about these registers.

— We are in the process of improving the introductory A64 instruction descriptions in Chapter C6 A64 Base
Instruction Descriptions and Chapter C7 A64 Advanced SIMD and Floating-point Instruction
Descriptions. However, this work is incomplete and many instructions still have only a minimal introduction.

— The subsections on Traps and enables in the System register descriptions in Chapter D7 AArch64 System
Register Descriptions and Chapter G6 AArch32 System Register Descriptions, that were added in issue
A.d, have been significantly revised. These revisions have not had the same level of review as the rest of the
manual.

. We are working to improve the descriptions of register reset behavior in the register descriptions throughout this manual.
For issue A.e we have concentrated on the AArch32 System registers described in Chapter G6 AArch32 System
Register Descriptions, excluding the GICv3 CPU interface registers and the debug registers.

Note

Except for the registers mentioned in this bullet, the register descriptions do not give a clear indication of when any stated
reset values apply. PE state on reset to AArch64 state on page D1-1512 summarizes the requirements for a reset into
AArch64 state, but there is no equivalent summary for a reset into AArch32 state.

. There have been additions to the Performance Monitors Extension described in Chapter D5 The Performance
Monitors Extension. These additions include the definition of additional events, described in Chapter D5, and
additional recommended IMPLEMENTATION DEFINED events, described in Appendix J3 Recommendations for
Performance Monitors Event Numbers for IMPLEMENTATION DEFINED Events. These additions have had
only very limited review. In addition, while we believe Appendix J3 lists all of the new recommended IMPLEMENTATION
DEFINED events, it does not yet describe the new events.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. iii
ID121714 Non-Confidential - Beta

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM DDI 0487A.e
ID121714

Contents

ARM Architecture Reference Manual ARMvS, for
ARMv8-A architecture profile

Part A

Chapter Al

Part B

Chapter B1

Al1l
Al.2
Al.3
Al4
Al5
Al1.6
Al.7

Bl.1
B1.2
B1.3

Preface

ADOUL thiS MANUALooiiiiiiiiee e XVi
USING thiS MANUAcoiiiiiiiii et e e e Xviii
(©70] 01771 01110] 1S PSPPI XXiii
AddItioNAl FEATING ...veieieeiie it XXV
(=TT o | o F= Tod USRS XXVi
ARMvS8 Architecture Introduction and Overview
Introduction to the ARMv8 Architecture

About the ARM ArChitECIUMEccuviiiieiiciiiiee e e A1-30
Architecture profilesc..ooiiii i Al1-32
ARMVS8 architeCtural CONCEPLSeeevueeeiirieisii ettt Al1-33
SY0]o] oTo] g (=To e F= 1 e= 1Y/ o1 TP TP Al1-36
Floating-point and Advanced SIMD SUPPOITcccuuviiiiiiiiiieiee e eriieeee e Al-46
Cryptographic EXIENSIONveiiiiiiiiiii et Al-52
The ARM Memory MOlcooiiiiiiiiieiiee e A1-53

The AArch64 Application Level Architecture

The AArch64 Application Level Programmers’ Model

About the Application level programmers’ modelccccccoviiiiiiiiniiieeeen e, B1-58
Registers in AArch64 Execution state
Software control features and ELO

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

Chapter B2 The AArch64 Application Level Memory Model

B2.1 AAIESS SPACE ...eieiiiiieiiti ettt B2-68
B2.2 MEMOTY LYPE OVEIVIEWeiiiieiiiiieie et ee ettt e e ettt e e e e e sata et e e e e antee e e e e anneeeeaeeenneee B2-69
B2.3 Caches and memory hIErarChyccccoooiiiiiiiiiiiie e B2-70
B2.4 AlIGNMENT SUPPOIT ...ttt e et r e e s et e e e e et e e e e e e neaeeeas B2-75
B2.5 S aTo = Ta IRV] o] o o] o AR PP PPTPPPPPRN: B2-76
B2.6 Atomicity in the ARM arcChitECIUrecccoovviiiiirieriee e B2-79
B2.7 V=T aaTeT Vo] (o (=141 oo [O P PR OP PP PPPROP B2-82
B2.8 Memory types and attribULESccccoviiiiiiiieie e B2-91
B2.9 Mismatched memory attributes ... B2-100
B2.10 Synchronization and SeMAaPNOresccooiiiiiieiiiiiiiee et B2-103
Part C The AArch64 Instruction Set
Chapter C1 The A64 Instruction Set
Cl1 [0 o (8 ox 1o] o U EUP PRSP C1-116
Cl1.2 Structure of the A64 assembler languagecccooviiiiiiiirii e, C1l-117
CL.3 AdAreSS gENEIALIONeiiiiiiiiiiiie ettt e e et e e e e enbee e e e e s abbeeeeeaenns C1-122
Cl.4 INSLIUCHON @lIASESeiiiiiiiiiiie e C1-125
Chapter C2 About the A64 Instruction Descriptions
c21 Understanding the A64 instruction descriptionsccccecvvieeeeiiiiieee e C2-128
Chapter C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructionscccccecvvveeeenn. C3-132
C3.2 LOAAS AN SLOMEScveeiiiieiiie ettt C3-136
C3.3 Data processing - iMMEAIALEccoiriiiiiiiiiee e C3-147
C34 Data ProCesSiNg - FEQISIETciiiiieeiiiieiee ettt C3-152
C35 Data processing - SIMD and floating-pointcccocvverieee e C3-159
Chapter C4 A64 Instruction Set Encoding
C4.1 A64 instruction index by enCOdINGcooiiiiiiiiiiiiee e C4-180
C4.2 Branches, exception generating and system instructionsccccoccveveeeenne C4-181
C4.3 LOAAS AN SLOTESveiieiieitie ettt C4-184
Ca4.4 Data processing - iMMEIAteccccvvuiieiiiiiiiee e C4-201
C4.5 Data ProCesSiNg - FEQISIETuviiiiiieiiii ettt C4-204
C4.6 Data processing - SIMD and floating pointccccocveiieee e C4-211
Chapter C5 The A64 System Instruction Class
C5.1 About the System instruction and System register descriptions C5-238
C5.2 The System instruction class encoding SPACEcceerrereriiiierieeeinree e C5-239
C5.3 SPECIal-PUrPOSE FEOISIEIS ...ciiiiiiiiiee ittt e e e e e e e C5-259
C5.4 A64 system instructions for cache maintenancecccccceeviieviee e, C5-311
C5.5 A64 system instructions for address translationcccccecvvieeeeiicieee e, C5-327
C5.6 A64 system instructions for TLB maintenanceccccccvviiviieeiniecniiee e, C5-340
Chapter C6 A64 Base Instruction Descriptions
C6.1 [goTo [0 ox1To] o I T PR U PP URP ORI C6-394
C6.2 REGISIEE SIZE .ottt e e et e e e e et e e e e e nebeeeaeean C6-395
CB.3 USE OF the PC ..ttt C6-396
C6.4 Use of the StaCK POINETooiiiiiiii e e C6-397
C6.5 Condition flags and related iNStruCtionscccccooeciiiie e C6-398
C6.6 Alphabetical list Of INSIrUCLIONSuviiiiiiiiiiie e C6-399
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions
C7.1 INFOAUCTION ...ttt et C7-806
Vi Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Part D

Chapter D1

Chapter D2

Chapter D3

Chapter D4

C7.2
C7.3

D1.1
D1.2
D1.3
D1.4
D1.5
D1.6
D1.7
D1.8
D1.9
D1.10
D1.11
D1.12
D1.13
D1.14
D1.15
D1.16
D1.17
D1.18
D1.19
D1.20
D1.21

D2.1
D2.2
D2.3
D2.4
D2.5
D2.6
D2.7
D2.8
D2.9
D2.10
D2.11
D2.12
D2.13

D3.1
D3.2
D3.3
D3.4
D3.5
D3.6
D3.7

D4.1
D4.2
D4.3
D4.4

About the SIMD and floating-point INSIIUCLIONScoiiiiiieeriiiieee e C7-807
Alphabetical list of floating-point and Advanced SIMD instructions C7-809

The AArch64 System Level Architecture

The AArch64 System Level Programmers’ Model

EXCEPLON IEVEIS ..o D1-1490
Exception terminology D1-1491
Execution statecccceeennnne D1-1493
Security state D1-1494
VIUAIZALION ..o D1-1496
Registers for instruction processing and exception handlingcccccoueee.. D1-1499
Process state, PSTATE ... era s D1-1506
Program counter and stack pointer alignment D1-1509
RSB .t e e e e e e e e e e e aeeaeas D1-1511
EXCEPLION ENEIY .ottt e e e et e e e e e e e s anee D1-1516
et o1 (o =1 (U1 1 o IR PRSPPI D1-1534
The Exception level hierarChy ... D1-1539
Synchronous exception types, routing and priorities D1-1546
Asynchronous exception types, routing, masking and priorities D1-1552
Configurable instruction enables and disables, and trap controls D1-1558
SYSIEM CAIIS ..o D1-1595
Mechanisms for entering a low-power state D1-1597
Self-hosted debugcccovveeiiiiiiiiecieciee. D1-1603
The Performance Monitors EXtENSIONcceeiiiviiiieeiiiiiiiee e eieeee e D1-1605
INEEIPIOCESSING .uuveiiitiee ettt e e e e e reeenaee D1-1606
Supported CONfIGQUIALIONScccuviiiiiieiiee e D1-1617
AArch64 Self-hosted Debug
About debUQ EXCEPLIONS ...ttt e et e e e D2-1623
The debug exception enable controls D2-1626
Routing debug eXCEPLIONSc.uvvieeiiiiiiiie e e et a e D2-1627
Enabling debug exceptions from the current Exception level and Security state D2-1629
The effect of powerdown on debug exceptionsccccooceeeviieeiiiie e D2-1631
Summary of the routing and enabling of debug exceptionsc.ccecvveenee. D2-1632
Pseudocode description of debug exceptions D2-1634
Software Breakpoint INStruction eXCeptionsoccceevieiiiiieeienniiiiieeee e D2-1636
Breakpoint @XCEPLIONSiiiiiiiiii et e e e e D2-1638
Watchpoint exceptions D2-1656
Vector Catch exceptions D2-1670
Software Step exceptions D2-1671
Synchronization and debug exCeptionsccceviiee i D2-1686
The AArch64 System Level Memory Model
About the memory system architeCtureccccoocceiieiiiiiiie e D3-1688
AAAIrESS SPACE ..eeiiiiiiiiiii ettt e e st e e e e e e e e br e e e aanee D3-1689
Mixed-eNndian SUPPOIToeiiiiiiiiie et e e e e e e e st e e e s et e e e e e saens D3-1690
Cache support D3-1691
EXTErNal aDOIScooiiiiiiiiie e D3-1711
Memory barrier INSITUCHIONSeeiireeeiie et D3-1713
Pseudocode description of general memory system instructions D3-1714
The AArch64 Virtual Memory System Architecture
About the Virtual Memory System Architecture (VMSA) D4-1726
The VMSAV8-64 address translation system D4-1728
Translation table walk examplesccccoevviiiiiiiiiee i, D4-1779
VMSAV8-64 translation table format descriptors D4-1791

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

vii

D4.5 Access controls and memory region attributesccccoccceveeiiiiiiieeeeeceeeen D4-1800

DA.6 MMU FAUILSooiiiiiiiiies et D4-1816
D4.7 Translation Lookaside Buffers (TLBs) D4-1824
D4.8 Caches in a VMSA implementationccccccvieeeiiiiiiie e D4-1840
Chapter D5 The Performance Monitors Extension
D5.1 About the Performance MONItOrScccoveiiieiiiiiiiiene e D5-1846
D5.2 Accuracy of the Performance MONItOrScccocvviiiiiiiieee e D5-1849
D5.3 Behavior 0N OVEIOWcooiiiiiiiiciie e D5-1851
D5.4 AUFNDULADIITY ..eeeeiieeecee s D5-1854
D5.5 Effect Of EL3 @Nd EL2oociiiiiiiiiiiiccieeie e D5-1855
D5.6 Event filteringcoooiiiiie, D5-1857
D5.7 Performance Monitors and Debug Statecccoovviveeeiiiiiieee e D5-1859
D5.8 COUNLEr ENADIES ... D5-1860
D5.9 Counter aCCesSsScccceevvvvveeeernnnnnn. D5-1861
D5.10 Event numbers and mnemonics D5-1863
D5.11 Performance Monitors Extension registers D5-1882
D5.12 Pseudocode deSCHPLIONccooiiiiiiiiiiiiiae et e ettt e e eneneee e D5-1885
Chapter D6 The Generic Timer in AArch64 state
D6.1 About the Generic Timer in AArCh64 Statecccoviiiiiiiieiiiiie e D6-1890
D6.2 About the Generic Timer AArch64 System registerscccccovvvvivereeiiiiiieee e, D6-1897
Chapter D7 AArch64 System Register Descriptions
D7.1 About the AArch64 System regisSterscccceeiiiiiieii e D7-1900
D7.2 General system CONrol FEQISTErSccocuiiieeicciiiiee e D7-1904
D7.3 DEDUQY FEQISTEIS ... D7-2148
D7.4 Performance Monitors registers D7-2218
D7.5 GENENIC TIMET FEQISTEISveiiiiiiieeiei ettt D7-2258
D7.6 Generic Interrupt Controller CPU interface registersocccveeiiiiieieeeeninenn. D7-2286
Part E The AArch32 Application Level Architecture
Chapter E1 The AArch32 Application Level Programmers’ Model
El.1 About the Application level programmers’ modelccccccovviiiiieeiiiiiieee s E1-2370
E1.2 Additional information about the programmers’ model in AArch32 state E1-2371
E1.3 Advanced SIMD and floating-point instructions E1-2385
El1.4 Conceptual coprocessor SUpPortc.coceeu.. E1-2414
E1.5 EXCEPLONS ..ottt E1-2415
Chapter E2 The AArch32 Application Level Memory Model
E2.1 PN [0 | (oI S o - T PP PP E2-2418
E2.2 Memory type overview E2-2421
E2.3 Caches and memory hierarchy E2-2422
E2.4 AlIGNMENT SUPPOIT ..ottt e e e e e nnnee e E2-2427
E2.5 Endian SUPPOItccooviiiiiiiiiiiieeeeeeee e E2-2429
E2.6 Atomicity in the ARM architecture E2-2432
E2.7 [V [T g ToT VA o] (o (=1 o1 oo [RO PP PP E2-2436
E2.8 Memory types and attributes E2-2445
E2.9 Mismatched memory attributes E2-2453
E2.10 Synchronization and semaphores E2-2456
Part F The AArch32 Instruction Sets
Chapter F1 The AArch32 Instruction Sets Overview
F1.1 Support for instructions in different versions of the ARM architecture F1-2468
viii Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Chapter F2

Chapter F3

Chapter F4

Chapter F5

Chapter F6

F1.2
F1.3
F1.4
F1.5
F1.6
F1.7
F1.8
F1.9
F1.10
F1.11
F1.12
F1.13
F1.14

F2.1
F2.2
F2.3
F2.4
F2.5
F2.6
F2.7

F3.1
F3.2
F3.3

F4.1
F4.2
F4.3
F4.4
F4.5
F4.6
F4.7

F5.1
F5.2
F5.3
F5.4
F5.5
F5.6
F5.7
F5.8
F5.9

F6.1
F6.2
F6.3
F6.4
F6.5
F6.6
F6.7
F6.8

Unified Assembler LANQUAGEc.ooiiiiiiiieiiiiiee et F1-2469

Branch iNStIUCHIONSeiiiiiiiiiiiee et F1-2471
Data-processing instructions F1-2472
PSTATE access instructions F1-2480
Load/store instructions F1-2481
Load/store multiple instructions F1-2483
Miscellaneous INSTIUCHIONSveiiieeiiieie e e e e e e F1-2484
Exception-generating and exception-handling instructions F1-2485
COProCeSSOr INSIIUCTIONSccoiiiiiiieeiiiiiiee e F1-2486
Advanced SIMD and floating-point load/store instructions F1-2487
Advanced SIMD and floating-point register transfer instructions F1-2489
Advanced SIMD data-processing iNStruCtioNScc.ecovveeeriiiieniiee e F1-2490
Floating-point data-processing iNStrUCHIONScoovcvviiieeeiiiie e F1-2498

About the T32 and A32 Instruction Descriptions

Format of instruction descriptions F2-2502

Standard assembler syntax fields F2-2506
[07e] g o 11 e gb= LI =) (T o1 U] 1T] o PP STTROR F2-2507
Shifts applied 10 @ FEQISTEN ..vevieeiiiieiie e F2-2510
MEMOIY ACCESSES ...oeiiiiiiiiiiiiiiriee ettt e et e e e F2-2513

F2-2514
F2-2515

Encoding of lists of general-purpose registers and the PC
Additional pseudocode support for instruction descriptions

T32 Base Instruction Set Encoding

T32 INStruction Set @NCOAINGcoeiiiuiiiieiiiiie e e e F3-2518
16-bit T32 iNStruction €NCOAINGevviiirieiiiieriiee e F3-2521
32-bit T32 INSrUCtiON €NCOAINGuveeiiiiiiiiiei it F3-2528

A32 Base Instruction Set Encoding
A32 iNStruction SEt @NCOINGeieiiiiiiiiei ettt F4-2552
Data-processing and miscellaneous instructions F4-2555

Load/store word and unsigned byte F4-2567
Media INSrUCLIONSccvvviiiiieieeeeeeeeeeee e F4-2568
Branch, branch with link, and block data transfer F4-2573
Coprocessor instructions, and Supervisor Callccccoovvviiiieiieenee e, F4-2574
Unconditional iINSIIUCLIONSccoiiiiiiiiiicie et e e F4-2575

T32 and A32 Instruction Sets Advanced SIMD and floating-point

Encodings

OVEIVIBW .t ettt e e oottt e e e e skttt e e e et et e e e e anbeeeeaeeannsaeeaeesansbneeaaeanens F5-2580
Advanced SIMD and floating-point instruction syntax F5-2581
Register encodingccoouvieeeiiiiiieee et F5-2585
Advanced SIMD data-processing instructions F5-2587
Floating-point data-processing iNStruCtionsccccovveeeniveenieeenineeenn F5-2599
Advanced SIMD and floating-point register load/store instructions F5-2602
Advanced SIMD element or structure load/store inStructionscccccccvvennee F5-2603
8, 16, and 32-bit transfers accessing the SIMD and floating-point register file F5-2606
64-bit transfers accessing the SIMD and floating-point register file F5-2607
ARMv8 Changes to the T32 and A32 Instruction Sets

The A32 and T32 iNSrUCLION SELSc.ccciieiiiiiieiie it F6-2610
Partial deprecation Of ITccviiiiiiiiiice e F6-2611
New A32 and T32 Load-Acquire/Store-Release instructionsccccveeeenne F6-2612
New A32 and T32 scalar floating-point inStructionsccccccevevveeen. F6-2613
New A32 and T32 Advanced SIMD floating-point instructions F6-2616
New A32 and T32 instructions provided by the Cryptographic Extension F6-2618
New A32 and T32 System iNSIIUCLIONSccccvieeeiiiiiiiee e F6-2619
CRC32 INSIIUCLIONS ...ttt et F6-2621

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

Chapter F7 T32 and A32 Base Instruction Set Instruction Descriptions

F7.1 Alphabetical list of T32 and A32 base instruction set instructions F7-2624
F7.2 Encoding and use of Banked register transfer instructionsccccccceeeenne F7-3255
Chapter F8 T32 and A32 Advanced SIMD and floating-point Instruction Descriptions
F8.1 Alphabetical list of floating-point and Advanced SIMD instructions F8-3260
Part G The AArch32 System Level Architecture
Chapter G1 The AArch32 System Level Programmers’ Model
Gl1l.1 About the AArch32 System level programmers’ modelc.ccccevvveeiinnennnn. G1-3794
G1.2 EXCEPLON IEVEIS ..o G1-3795
G1.3 EXCeption terminolOgYccooiiiiiiiiiee e G1-3796
G1l.4 EXECULION STALEeeiiiiiiiiiie ettt et et e e eaabee e e e an G1-3798
G1.5 INSTFUCLION S STALEeeiiiii e G1-3800
G1.6 SECUIMLY STALE ..eiiiiiiiiiie e ittt e e e e e et e e e e st e e e s st be e e e e e eranes G1-3801
L A Y /10 (VT[4 L1 T I PSP PP PPURSRT G1-3804
G1.8 AArch32 PE modes, general-purpose registers, and the PCcccccceenee. G1-3806
G1.9 Process state, PSTATE ... G1-3818
G1.10 INSLrUCHON SEE STAIES ...eeiiiiiiiiiiie ettt e e e et eee e e anee G1-3825
G1.11 Handling exceptions that are taken to an Exception level using AArch32 G1-3827
G1.12 Exception return to an Exception level using AArch32cccccceevviivieee e, G1-3844
G1.13 Asynchronous exception behavior for exceptions taken from AArch32 state . G1-3849
G1l.14 AArch32 state exception deSCrPLiONSc.eeeiiuireriiieiiiie e G1-3859
G1.15 ReSetinto AAICN32 SALEcoiciiieiiiie i G1-3885
G1.16 Mechanisms for entering a low-powWer Statecccceerreiiriiieriiee e G1-3888
G1.17 The conceptual coprocessor interface and system controlccccooeueeeee. G1-3893
G1.18 Advanced SIMD and floating-point SUPPOItcovvveieiiireiiiiee e G1-3896
G1.19 Configurable instruction enables and disables, and trap controls G1-3901
Chapter G2 AArch32 Self-hosted Debug
G2.1 About debug EXCEPLIONSoiiiiiiiiiie e e G2-3937
G2.2 The debug exception enable CONtrolSccccvviiiiiiiiiieiie e G2-3940
G2.3 Routing debug eXCEPLIONSeiiiiiiiiiiie et eeee e G2-3941
G2.4 Enabling debug exceptions from the current Privilege level and Security state G2-3943
G2.5 The effect of powerdown on debug eXCeptionsccccceeeeriiiieeeiiniiieeeeenies G2-3945
G2.6 Summary of permitted routing and enabling of debug exceptions G2-3946
G2.7 Pseudocode description of debug exceptionsc.cccocveriiiiiinii s G2-3948
G2.8 Software Breakpoint INStruction eXCeptionsccccevveeiiiiieniiee e G2-3949
G2.9 Breakpoint @XCEPLIONSeiii ettt e e e e G2-3952
G2.10 WatChpoint @XCEPLIONS ...coieiiiiiiei ittt et e e et e e e e e ee e e e aneeee G2-3976
G2.11 Vector CatCh EXCEPLIONScciiiiiiiiiiei ittt G2-3990
G2.12 Synchronization and debug eXCeptionscccceiiiriiiiiciiiiiene e G2-3998
Chapter G3 The AArch32 System Level Memory Model
G3.1 About the memory system architeCtureccccveeiiiiieiee e G3-4002
G3.2 AJAIESS SPACE ..ociiiiiiiieiiiiieiee e e ettt e e st e e e e s et e e e s e e a e e e e e e e e e st rae e e e e iare G3-4003
G3.3 MiXed-eNdian SUPPOTTveeeiiiiiiiiie et e G3-4004
(I A 07 Lol 1 [T U] o] o] i AP OPRPPP RSP PPR G3-4006
G3.5 System register support for IMPLEMENTATION DEFINED memory features G3-4028
G3.6 EXternal aDOISoooiiiiii e G3-4029
G3.7 Memory barrier iINSIIUCHIONScccviiiiiiciiiiee e G3-4031
G3.8 Pseudocode description of general memory system instructions G3-4032
Chapter G4 The AArch32 Virtual Memory System Architecture
G4.1 Execution privilege, Exception levels, and AArch32 Privilege levels G4-4042
G4.2 ADOULVMSAVB-32 ...ttt ettt ettt st G4-4044
X Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Chapter G5

Chapter G6

Part H

Chapter H1

Chapter H2

Chapter H3

Chapter H4

G4.3
G4.4
G4.5
G4.6
G4.7
G4.8
G4.9
G4.10
G4.11
G4.12
G4.13
G4.14
G4.15
G4.16
G4.17
G4.18
G4.19

G5.1
G5.2

G6.1
G6.2
G6.3
G6.4
G6.5
G6.6

H1.1
H1.2

H2.1
H2.2
H2.3
H2.4
H2.5

H3.1
H3.2
H3.3
H3.4
H3.5
H3.6
H3.7
H3.8
H3.9

H4.1
H4.2

The effects of disabling address translation stages on VMSAV8-32 behavior G4-4051
Translation tables ... G4-4055

The VMSAV8-32 Short-descriptor translation table format G4-4060
The VMSAV8-32 Long-descriptor translation table format G4-4073
MEMOry aCCESS CONIOIeviiiiiiiiiiieiee et G4-4093
Memory region attribULeSocciiiiiiiii e G4-4102
Translation Lookaside Buffers (TLBs) G4-4114
TLB maintenance requirements G4-4117
Caches in VMSAV8-32ccooviieeiiiiiiieeeeis G4-4129
VMSAV8-32 memory abortscccccvveeeeiiiiiieeeeiiiieeee e G4-4133
Exception reporting in a VMSAV8-32 implementationc.ccoecveiiieeeiieeens G4-4145
Virtual Address to Physical Address translation inStructionsccccoocveens G4-4164
About the System registers for VMSAv8-32 G4-4170
Organization of the CP14 registers in VMSAV8-32c.ccociiiieiiiiiiieee e, G4-4191
Organization of the CP15 registers in VMSAV8-32c.ccociiiieiiiiiiieee e, G4-4194
Functional grouping of VMSAV8-32 System registers G4-4213
Pseudocode description of VMSAV8-32 memory system operations G4-4234

The Generic Timer in AArch32 state
About the Generic Timer in AAICN32 StAtEccevveviieeieieeeeeee et G5-4252

About the AArch32 Generic Timer System registers G5-4259
AArch32 System Register Descriptions

About the AArch32 SyStem FEQISLEISeeeiiiiieiiiieeiiie et G6-4262
General System CONrol FEQISLENSeiiiuiiieeiiiiiiie e G6-4263
DEDUQG FEAISTEIS ..ottt e e G6-4676
Performance MONItOrs reQISLEIScciiiiiuuiieieiiiiiieee et e e rieee e e e G6-4765
GENENIC TIMET TEQISTEIS ...vviiieiiiiiieie ettt eetee e e e e e e e e e st e e e s earaeeas G6-4808
Generic Interrupt Controller CPU interface registerscccovveeiviiveeeeecennnen. G6-4841
External Debug
Introduction to External Debug

Introduction to external debugooooiiiiiiiii e H1-4932
EXtErnal debUQoooiiiiiieic e H1-4933
Debug State

About Debug statecccoeciiieeiiiiee e, H2-4936
Halting the PE on debug events H2-4937
Entering DebUQ STAteoooviiiiiii i H2-4944
Behavior in DEDUQ STALEccoieeiiiiieeiii et H2-4948
EXiting DEDUQ STALEccoiiiiiiiiie it H2-4974
Halting Debug Events

Introduction to Halting debug events ... H3-4978
Halting Step debug event H3-4980
Halt Instruction debug EVENTcoooiiiiiiiicciee e H3-4990
Exception Catch debug eVENLoooiiiiiieiiieic e H3-4991
External Debug Request debug event H3-4994
OS Unlock Catch debug eventcccocc.e. H3-4995
Reset Catch debug eventcccceevveennen. H3-4996
Software AcCess debug EVENLcooiiiiii e H3-4997
Synchronization and Halting debug eventsccocooiiiiiiiin e, H3-4998

The Debug Communication Channel and Instruction Transfer Register

[1700 [8 o311] o PP UPTRROTPRPN H4-5002
DCC and ITR FEQISIEIS ...vviiieiiiiiiiee e e ettt e sttt e s s s e et re e e s earaaea e an H4-5003

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

Xi

H4.3 DCC and ITR ACCESS MOUEScoevieieeiiiiceeee et e e e H4-5005

H4.4 Flow control of the DCC and ITR registers H4-5009

H4.5 Synchronization of DCC and ITR accesses ... H4-5013

H4.6 Interrupt-driven use 0f the DCCooeiiiiiiiieii et H4-5018

H4.7 Pseudocode description of the operation of the DCC and ITR registers H4-5019
Chapter H5 The Embedded Cross Trigger Interface

H5.1 About the Embedded Cross Trigger (ECT) ..occovviiiieeiiiiieiieie e H5-5024

H5.2 Basic operation 0N the ECTcccoiiiiiiiiiiicniiee e H5-5026

H5.3 Cross-triggers on a PE in an ARMv8 implementationccccceevveeenieenee. H5-5030

H5.4 Description and allocation of CTI triggers H5-5031

H5.5 CTI registers programmers’ model H5-5034

H5.6 EXAMPIES ooreiiiiitie et e e araa s H5-5035
Chapter H6 Debug Reset and Powerdown Support

H6.1 About Debug OVer POWEIJOWNcocueeiiiiieiiiiee ettt H6-5040

H6.2 Power domains and debug ... H6-5041

H6.3 Core power domain POWET STALESueveriieriiieiiree et H6-5042

H6.4 Emulating low-power statesccccceeeennee. H6-5044

H6.5 Debug OS Save and Restore sequences H6-5046

H6.6 Reset and deDUQGooueiiiiii e H6-5051
Chapter H7 The Sample-based Profiling Extension

H7.1 Sample-based Profiling ... H7-5054
Chapter H8 About the External Debug Registers

H8.1 Relationship between external debug and System registerscccoccveeennn. H8-5060

H8.2 SUPPOIEA ACCESS SIZES ..uveieiiiiieiiiieiieee et e sitee e rtee et e e st e et e e sneeeenaneas H8-5061

H8.3 Synchronization of changes to the external debug registers H8-5062

H8.4 Memory-mapped accesses to the external debug interface H8-5066

H8.5 External debug interface register access permissions H8-5068

H8.6 External debug interface registerscccccceviiieeeennnn H8-5072

H8.7 Cross-trigger interface regiSters ... H8-5077

H8.8 External debug regiSter reSEtScocveiviiiiiiiiiiee e H8-5079
Chapter H9 External Debug Register Descriptions

H9.1 T goTo [0 ox 110] o IR PSP UP P OPPPR H9-5082

H9.2 DEDUG FEUISLEIS ..eiiieiiiiiiee ettt e e e e e e s et bar e e e s e enaraaeesenes H9-5083

H9.3 Cross-Trigger Interface regiSters ... H9-5166

Part | Memory-mapped Components of the ARMv8 Architecture

Chapter I1 System Level Implementation of the Generic Timer

11.1 About the Generic Timer SpecifiCcationcccccccvvivie i

11.2 Memory-mapped counter modulecccocevieiiiiiiiieeeiins

11.3 Counter module control and status register summary

11.4 Memory-mapped timer COMPONENTSc.cuvveiieeiriiie et

11.5 The CNTBaseN and CNTELOBaseN frames
11.6 The CNTCTLBASE framevceeeeieeieiiieieeevicieeee e,

11.7 Providing a complete set of counter and timer featurescc.........
11.8 Gray-count scheme for timer distribution schemeccccoveiiiiiiie e,
Chapter 12 Recommended Memory-mapped Interfaces to the Performance Monitors
12.1 About the memory-mapped views of the Performance Monitors registers 12-5224
Xii Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Chapter I3

Part J

Appendix J1

Appendix J2

Appendix J3

Appendix J4

Appendix J5

Appendix J6

Appendix J7

Appendix J8

Appendix J9

13.1
13.2
13.3
13.4
13.5

Ji1
J1.2

J2.1
J2.2
J2.3
J2.4

J3.1
J3.2

Ja.1

J5.1
J5.2

J6.1

J7.1
J7.2
J7.3
J7.4
J7.5
J7.6

Jg.1
Jg.2
J8.3

Jo.1
J9.2
J9.3
J9.4
J9.5
J9.6
J9.7

Memory-Mapped System Register Descriptions

About the memory-mapped system register descriptionscccccccovvcvveeennnns
Performance Monitors memory-mapped registers summaryccccceeeeeeenee
Performance Monitors memory-mapped register descriptions
Generic Timer memory-mapped registers OVerVieWccccceeeeeenneee
Generic Timer memory-mapped register descriptions

Appendixes

Architectural Constraints on UNPREDICTABLE behaviors
AArch32 CONSTRAINED UNPREDICTABLE behaviorsccccovvvvvveveeneeenn.. J1-5322
Constraints on AArch64 state UNPREDICTABLE behaviors J1-5400

Recommended External Debug Interface
About the recommended external debug interfaceccccocoeiiiniiiiee e, J2-5414

PMUEVENT DUS coooiiiiiiiiiieccc et J2-5417
Recommended authentication interface J2-5418
Management registers and CoreSight complianceccccooevviiiiiieeniieennne J2-5421

Recommendations for Performance Monitors Event Numbers for
IMPLEMENTATION DEFINED Events

ARM recommendations for IMPLEMENTATION DEFINED event numbers J3-5428
Summary of events taken to an Exception Level using AArch64 J3-5440

Legacy Instruction Syntax for AArch32 Instruction Sets
Legacy INSLrUCHION SYNEAX ...cccviiiiiieiiiie et J4-5444

Example OS Save and Restore Sequences
SaVe DEDUQY FEQISLEISviieiiiiieiiiie ittt J5-5452
Restore DebUQ rEQISIEISeiiiiiie ettt e e e e e e J5-5454

Recommended Upload and Download Processes for External Debug

Using memory access mode in AArch64 stateccccooecviieeeeeiiiieeeeecieeeee J6-5458

Barrier Litmus Tests

LY A oo VT2 To] o IR J7-5462
Load-Acquire, Store-Release and barriersccccceeiiiiiiiieiiniiieee e J7-5465
Load-Acquire Exclusive, Store-Release Exclusive and barriers J7-5471
Using a mailbox to send an interruptccccoeevvvveeeeeinns J7-5476
Cache and TLB maintenance instructions and barriers J7-5477
ARMvV7 compatible approaches for ordering, using DMB and DSB barriers J7-5487

ARMvS8 Pseudocode Library

Library pseudocode for AAIChBAoooiiiiiiiieiiiiece e J8-5502
Library pseudocode for AArCh32 ... J8-5561
Common library pSEUAOCOAEccuviiiiiiiiiiierie e J8-5632

ARM Pseudocode Definition
About the ARM PSEUAOCOAEcooiiiiiiieiiiiiie ettt e e e e e e J9-5710
Pseudocode for instruction descriptions J9-5711

Data tYPES ..uvvvvvrviriiiiiiiiiiiiir e J9-5713
EXPIESSIONS ...cciiiiiiiee ettt ettt e e e e st e e e e e et e e e e e et e e e e e s traraae s J9-5717
Operators and built-in FUNCHONSooiiiiiiiiie e J9-5719
Statements and program StrUCtUrecocceverreeerieerennne J9-5724
Miscellaneous helper procedures and functions J9-5728

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

xiii

Appendix J10 Pseudocode Index
J10.1 Pseudocode operators and KEYWOIdScccceovveeeririiniieeiiieee e J10-5732

J10.2 PSEUAOCOUE INUEX ...uveeeiiiieiiiiieiieee et ettt e e J10-5735
Appendix J11 Registers Index
J11.1 Introduction and register disambiguationccccccviiiiiiiiiiniiieee e J11-5768
J11.2 Alphabetical index of AArch64 registers and system instructions J11-5772
J11.3 Functional index of AArch64 registers and system instructions J11-5782
J11.4 Alphabetical index of AArch32 registers and system instructions J11-5794
J11.5 Functional index of AArch32 registers and system instructions J11-5803
J11.6 Alphabetical index of memory-mapped registerscccccvvevinineennnns J11-5814
J11.7 Functional index of memory-mapped regiStersccooveirieeeriirenieeenineeens J11-5819
Glossary
Xiv Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Preface

This preface introduces the ARM Architecture Reference Manual, ARMv8, for ARMv8-A architecture profile. It
contains the following sections:

. About this manual on page xvi.
. Using this manual on page xviii.
. Conventions on page xxiii.
. Additional reading on page xxv.
. Feedback on page xxvi.

Note

This document describes only the ARMv8-A architecture profile. For the behaviors required by the ARMv7-A and
ARMV7-R architecture profiles, see the ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. XV
ID121714 Non-Confidential - Beta

Preface
About this manual

About this manual

This manual describes the ARM® architecture v8, ARMv8. The architecture describes the operation of an
ARMV8-A Processing element (PE), and this manual includes descriptions of:

. The two Execution states, AArch64 and AArch32.

. The instruction sets:

In AArch32 state, the A32 and T32 instruction sets, that are compatible with earlier versions of the

ARM architecture.

In AArch64 state, the A64 instruction set.

. The states that determine how a PE operates, including the current Exception level and Security state, and in
AArch32 state the PE mode.

. The Exception model.

. The interprocessing model, that supports transitioning between AArch64 state and AArch32 state.

. The memory model, that defines memory ordering and memory management. This manual covers a single
architecture profile, ARMv8-A, that defines a Virtual Memory System Architecture (VMSA).

. The programmers’ model, and its interfaces to System registers that control most PE and memory system
features, and provide status information.

. The Advanced SIMD and floating-point instructions, that provide high-performance:

Single-precision and double-precision floating-point operations.
Conversions between double-precision, single-precision, and half-precision floating-point values.

Integer, single-precision floating-point, and in A64, double-precision vector operations in all
instruction sets.

Double-precision floating-point vector operations in the A64 instruction set.

. The security model, that provides two security states to support secure applications.
. The virtualization model, that support the virtualization of Non-secure operation.
. The Debug architecture, that provides software access to debug features.

This manual gives the assembler syntax for the instructions it describes, meaning that it describes instructions in
textual form. However, this manual is not a tutorial for ARM assembler language, nor does it describe ARM
assembler language, except at a very basic level. To make effective use of ARM assembler language, read the
documentation supplied with the assembler being used.

This manual is organized into parts:

Part A

Part B

pPart C

Part D

Part E

Provides an introduction to the ARMv8-A architecture, and an overview of the AArch64 and
AArch32 Execution states.

Describes the application level view of the AArch64 Execution state, meaning the view from ELO.
It describes the application level view of the programmers’ model and the memory model.

Describes the A64 instruction set, that is available in the AArch64 Execution state. The descriptions
for each instruction also include the precise effects of each instruction when executed at ELO,
described as unprivileged execution, including any restrictions on its use, and how the effects of the
instruction differ at higher Exception levels. This information is of primary importance to authors
and users of compilers, assemblers, and other programs that generate ARM machine code.

Describes the system level view of the AArch64 Execution state. It includes details of the System
registers, most of which are not accessible from ELO, and the system level view of the programmers’
model and the memory model. This part includes the description of self-hosted debug.

Describes the application level view of the AArch32 Execution state, meaning the view from the
ELO. It describes the application level view of the programmers’ model and the memory model.

Xvi

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Part F

Part G

Part H

Part I

Appendixes

Preface
About this manual

—— Note
In AArch32 state, execution at ELO is execution in User mode.

Describes the T32 and A32 instruction sets, that are available in the AArch32 Execution state. These
instruction sets are backwards-compatible with earlier versions of the ARM architecture. This part
describes the precise effects of each instruction when executed in User mode, described as
unprivileged execution or execution at ELO, including any restrictions on its use, and how the effects
of the instruction differ at higher Exception levels. This information is of primary importance to
authors and users of compilers, assemblers, and other programs that generate ARM machine code.

— Note
User mode is the only mode where software execution is unprivileged.

Describes the system level view of the AArch32 Execution state, that is generally compatible with
earlier versions of the ARM architecture. This part includes details of the System registers, most of
which are not accessible from ELO, and the conceptual coprocessor interface to those registers. It
also describes the system level view of the programmers’ model and the memory model.

Describes the Debug architecture for external debug. This provides configuration, breakpoint and
watchpoint support, and a Debug Communications Channel (DCC) to a debug host.

Describes additional features of the architecture that are not closely coupled to a processing element
(PE), and therefore are accessed through memory-mapped interfaces. Some of these features are
OPTIONAL.

Provide additional information. Some appendixes give information that is not part of the ARMv8
architectural requirements. The cover page of each appendix indicates its status.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. Xvii
Non-Confidential - Beta

Preface
Using this manual

Using this manual

The information in this manual is organized into parts, as described in this section.

Part A, Introduction and Architecture Overview

Part A gives an overview of the ARMv8-A architecture profile, including its relationship to the other ARM PE
architectures. It introduces the terminology used to describe the architecture, and gives an overview of the
Executions states, AArch64 and AArch32. It contains the following chapter:
Chapter Al Introduction to the ARMv8 Architecture

Read this for an introduction to the ARMv8 architecture.

Part B, The AArch64 Application Level Architecture
Part B describes the application level view of the architecture in AArch64 state. It contains the following chapters:

Chapter B1 The AArch64 Application Level Programmers’ Model
Read this for an application level description of the programmers’ model for software executing in
AArch64 state. It describes execution at ELO when ELO is using AArch64 state.

Chapter B2 The AArch64 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch64 state. It describes the memory model for execution in ELO when ELO is using AArch64
state. It includes information about ARM memory types, attributes, and memory access controls.

Part C, The A64 Instruction Set

Part C describes the A64 instruction set, that is used in AArch64 state. It contains the following chapters:

Chapter C1 The A64 Instruction Set
Read this for a description of the A64 instruction set and common instruction operation details.

Chapter C2 About the A64 Instruction Descriptions
Read this to understand the format of the A64 instruction descriptions.

Chapter C3 A64 Instruction Set Overview
Read this for an overview of the individual A64 instructions, that are divided into five functional
groups.

Chapter C4 A64 Instruction Set Encoding
Read this for a description of the A64 instruction set encoding.

Chapter C5 The A64 System Instruction Class
Read this for a description of the AArch64 system instructions and register descriptions, and the
system instruction class encoding space.

Chapter C6 A64 Base Instruction Descriptions
Read this for information on key aspects of the A64 base instructions and for descriptions of the
individual instructions, which are listed in alphabetical order.

Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions

Read this for information on key aspects of the A64 Advanced SIMD and floating-point instructions
and for descriptions of the individual instructions, which are listed in alphabetical order.

Xviii Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Preface
Using this manual

Part D, The AArch64 System Level Architecture
Part D describes the AArch64 the system level view of the architecture. It contains the following chapters:

Chapter D1 The AArch64 System Level Programmers’ Model

Read this for a description of the AArch64 system level view of the programmers’ model.

Chapter D2 AArch64 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter D3 The AArch64 System Level Memory Model

Read this for a description of the AArch64 system level view of the general features of the memory
system.

Chapter D4 The AArch64 Virtual Memory System Architecture

Read this for a system level view of the AArch64 Virtual Memory System Architecture (VMSA),
the memory system architecture of an ARMv8 implementation that is executing in AArch64 state.

Chapter D5 The Performance Monitors Extension

Read this for a description of an implementation of the ARM Performance Monitors, that are an
optional non-invasive debug component.

Chapter D6 The Generic Timer in AArch64 state

Read this for a description of an implementation of the AArch64 view of the ARM Generic Timer.

Chapter D7 AArch64 System Register Descriptions
Read this for an introduction to, and description of, each of the AArch64 system registers.

Part E, The AArch32 Application Level Architecture
Part E describes the AArch32 application level view of the architecture. It contains the following chapters:

Chapter E1 The AArch32 Application Level Programmers’ Model

Read this for an application level description of the programmers’ model for software executing in
AArch32 state. It describes execution at ELO when ELO is using AArch32 state.

Chapter E2 The AArch32 Application Level Memory Model

Read this for an application level description of the memory model for software executing in
AArch32 state. It describes the memory model for execution in ELO when ELO is using AArch32
state. It includes information about ARM memory types, attributes, and memory access controls.

Part F, The AArch32 Instruction Sets
Part F describes the T32 and A32 instruction sets, that are used in AArch32 state. It contains the following chapters:

Chapter F1 The AArch32 Instruction Sets Overview
Read this for an overview of the T32 and A32 instruction sets.

Chapter F2 About the T32 and A32 Instruction Descriptions
Read this to understand the format of the T32 and A32 instruction descriptions.

Chapter F3 T32 Base Instruction Set Encoding

Read this for an introduction to the T32 instruction set and a description of how the T32 instruction
set uses the ARM programmers’ model.

Chapter F4 A32 Base Instruction Set Encoding
Read this for a description of the A32 base instruction set encoding.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. XixX
ID121714 Non-Confidential - Beta

Preface
Using this manual

Chapter F5 T32 and A32 Instruction Sets Advanced SIMD and floating-point Encodings
Read this for an overview of the T32 and A32 Advanced SIMD and floating-point instruction sets.

Chapter F6 ARMv8 Changes to the T32 and A32 Instruction Sets
Read this for a summary of the changes that are introduced to the T32 and A32 instruction sets in
ARMVS.

Chapter F7 T32 and A32 Base Instruction Set Instruction Descriptions
Read this for a description of each T32 and A32 base instruction.

Chapter F8 T32 and A32 Advanced SIMD and floating-point Instruction Descriptions
Read this for a description of each T32 and A32 Advanced SIMD and floating-point instruction.

Part G, The AArch32 System Level Architecture

Part G describes the AArch32 system level view of the architecture. It contains the following chapters:

Chapter G1 The AArch32 System Level Programmers’ Model

Read this for a description of the AArch32 system level view of the programmers’ model for
execution in an Exception level that is using AArch32.

Chapter G2 AArch32 Self-hosted Debug
Read this for an introduction to, and a description of, self-hosted debug in AArch64 state.

Chapter G3 The AArch32 System Level Memory Model

Read this for a system level view of the general features of the memory system.

Chapter G4 The AArch32 Virtual Memory System Architecture
Read this for a description of the AArch32 Virtual Memory System Architecture (VMSA).
Chapter G5 The Generic Timer in AArch32 state

Read this for a description of an implementation of the AArch32 view of the ARM Generic Timer.

Chapter G6 AArch32 System Register Descriptions
Read this for a description of each of the AArch32 system registers.

Part H, External Debug

Part H describes the architecture for external debug. It contains the following chapters:

Chapter H1 Introduction to External Debug

Read this for an introduction to external debug, and a definition of the scope of this part of the
manual.

Chapter H2 Debug State

Read this for a description of debug state, which the PE might enter as the result of a Halting debug
event.

Chapter H3 Halting Debug Events
Read this for a description of the external debug events referred to as Halting debug events.

Chapter H4 The Debug Communication Channel and Instruction Transfer Register
Read this for a description of the communication between a debugger and the PE debug logic using
the Debug Communications Channel and the Instruction Transfer register.

Chapter H5 The Embedded Cross Trigger Interface
Read this for a description of the embedded cross-trigger interface.

XX

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Preface
Using this manual

Chapter H6 Debug Reset and Powerdown Support
Read this for a description of reset and powerdown support in the Debug architecture.

Chapter H7 The Sample-based Profiling Extension

Read this for a description of the Sample-based Profiling Extension that is an OPTIONAL extension
to an ARMv8 implementation.

Chapter H8 About the External Debug Registers
Read this for some additional information about the external debug registers.

Chapter H9 External Debug Register Descriptions
Read this for a description of each external debug register.

Part I, Memory-mapped Components of the ARMv8 Architecture

Part | describes the memory-mapped components in the architecture. It contains the following chapters:

Chapter 11 System Level Implementation of the Generic Timer
Read this for a definition of a system level implementation of the Generic Timer.

Chapter 12 Recommended Memory-mapped Interfaces to the Performance Monitors

Read this for a description of the recommended memory-mapped and external debug interfaces to
the Performance Monitors.

Chapter 13 Memory-Mapped System Register Descriptions
Read this for a description of each memory-mapped system register.

Part J, Appendixes
This manual contains the following appendixes:

Appendix J1 Architectural Constraints on UNPREDICTABLE behaviors

Read this for a description of the architecturally-required constraints on UNPREDICTABLE behaviors
in the ARMV8 architecture, including AArch32 behaviors that were UNPREDICTABLE in previous
versions of the architecture.

Appendix J2 Recommended External Debug Interface
Read this for a description of the recommended external debug interface.

—— Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this

information.

Appendix J3 Recommendations for Performance Monitors Event Numbers for IMPLEMENTATION
DEFINED Events
Read this for a description of ARM recommendations for the use of the IMPLEMENTATION DEFINED
event numbers.

Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this
information.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. XXi
ID121714 Non-Confidential - Beta

Preface
Using this manual

Appendix J4 Legacy Instruction Syntax for AArch32 Instruction Sets

Read this for information about the pre-UAL syntax of the AArch32 instruction sets, that can still

be valid for the A32 instruction set.

Appendix J5 Example OS Save and Restore Sequences

Read this for software examples that perform the OS Save and Restore sequences for an ARMv8

debug implementation.

Note

Chapter H6 Debug Reset and Powerdown Support describes the OS Save and Restore mechanism.

Appendix J6 Recommended Upload and Download Processes for External Debug
Read this for information about implementing and using the ARM architecture.

Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this

information.

Appendix J7 Barrier Litmus Tests

Read this for examples of the use of barrier instructions provided by the ARMV8 architecture.

Note

This description is not part of the ARM architecture specification. It is included here as
supplementary information, for the convenience of developers and users who might require this

information.

Appendix J8 ARMv8 Pseudocode Library

Read this for the pseudocode definitions that are shared between AArch32 and AArch64.

Appendix J9 ARM Pseudocode Definition
Read this for definitions of the AArch32 pseudocode.

Appendix J10 Pseudocode Index
Read this for an index of the pseudocode.

Appendix J11 Registers Index

Read this for an alphabetic and functional index of AArch32 and AArch64 registers, and

memory-mapped registers.

xXii Copyright © 2013, 2014 ARM Limited. All rights reserved.

Non-Confidential - Beta

ARM DDI 0487A.e
ID121714

Conventions

Preface
Conventions

The following sections describe conventions that this book can use:

. Typographic conventions.

. Signals.

. Numbers.

. Pseudocode descriptions.

. Assembler syntax descriptions on page xxiv.

Typographic conventions

Signals

Numbers

The typographical conventions are:

italic Introduces special terminology, and denotes citations.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.
monospace Used for assembler syntax descriptions, pseudocode, and source code examples.

Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS
Used in body text for a few terms that have specific technical meanings, and are defined in the
Glossary.

Colored text Indicates a link. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Pseudocode descriptions.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Simple sequential execution or SCTLR.

In general this specification does not define hardware signals, but it does include some signal examples and
recommendations. The signal conventions are:

Signal level The level of an asserted signal depends on whether the signal is active-HIGH or
active-LOW. Asserted means:
. HIGH for active-HIGH signals.
. LOW for active-LOW signals.

Lower-case n At the start or end of a signal name denotes an active-LOW signal.

Numbers are normally written in decimal. Binary numbers are preceded by @b, and hexadecimal numbers by ox. In
both cases, the prefix and the associated value are written in a monospace font, for example 0xFFFFe000. To improve
readability, long numbers can be written with an underscore separator between every four characters, for example
OxFFFF_0000_0000_0000. Ignore any underscores when interpreting the value of a number.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in monospace font, and is described in Appendix J9 ARM Pseudocode Definition.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. XXiii
Non-Confidential - Beta

Preface
Conventions

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in Structure of the A64
assembler language on page C1-117, Appendix J9 ARM Pseudocode Definition, and Pseudocode operators and
keywords on page J10-5732.

XXV Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Additional reading

Preface
Additional reading

This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

Other publications

.

ARM® AMBA 4 ATB Protocol Specification, ATBv1.0 and ATBv1.1, (ARM IHI 0032B).
ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition (ARM DDI 0406).
ARM® Debug Interface Architecture Specification, ADIv5.0 to ADIV5.2 (ARM IHI 0031).
ARM® CoreSight™ Program Flow Trace Architecture Specification (ARM IHI 0035).
ARM®Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4,
(ARM IHI 0069).

ARM® CoreSight™ SoC Technical Reference Manual (ARM DDI 0480).
ARM® CoreSight™ v2.0 Architecture Specification (ARM IHI 0029).
ARM® Procedure Call Standard for the ARM 64-bit Architecture (ARM IHI 0055).

The following publications are referred to in this manual, or provide more information:

Announcing the Advanced Encryption Standard (AES), Federal Information Processing Standards
Publication 197, November 2001.

IEEE 754-2008, IEEE Standard for Floating-point Arithmetic, August 2008.

Secure Hash Standard (SHA), Federal Information Processing Standards Publication 180-2, August 2002.
The Galois/Counter Mode of Operation, McGraw, D. and Viega, J., Submission to NIST Modes of Operation
Process, January 2004.

Memory Consistency Models for Shared Memory-Multiprocessors, Gharachorloo, Kourosh, 1995, Stanford
University Technical Report CSL-TR-95-685.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. XXV
Non-Confidential - Beta

Preface
Feedback

Feedback

ARM welcomes feedback on its documentation.

Feedback on this manual
If you have comments on the content of this manual, send e-mail to errata@arm.com. Give:

. The title.

. The number, ARM DDI 0487A.e.

. The page numbers to which your comments apply.
. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

XXVi
Non-Confidential - Beta ID121714

Part A

ARMvS8 Architecture Introduction and Overview

Chapter Al

Introduction to the ARMvS8 Architecture

This chapter introduces the ARM architecture and contains the following sections:

.

About the ARM architecture on page A1-30.

Architecture profiles on page A1-32.

ARMV8 architectural concepts on page A1-33.

Supported data types on page Al-36.

Floating-point and Advanced SIMD support on page A1-46.
Cryptographic Extension on page A1-52.

The ARM memory model on page A1-53.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

Al1-29

Al Introduction to the ARMv8 Architecture
Al.1 About the ARM architecture

Al.1l About the ARM architecture

The ARM architecture described in this Architecture Reference Manual defines the behavior of an abstract machine,
referred to as a Processing Element, often abbreviated to PE. Implementations compliant with the ARM architecture
must conform to the described behavior of the Processing Element. It is not intended to describe how to build an
implementation of the PE, nor to limit the scope of such implementations beyond the defined behaviors.

Except where the architecture specifies differently, the programmer-visible behavior of an implementation that is
compliant with the ARM architecture must be the same as a simple sequential execution of the program on the
processing element. This programmer-visible behavior does not include the execution time of the program.

The ARM Architecture Reference Manual also describes rules for software to use the Processing Element.
The ARM architecture includes definitions of:

. An associated debug architecture, see:
— Chapter D2 AArch64 Self-hosted Debug.
— Chapter G2 AArch32 Self-hosted Debug.
— Part H of this manual, External Debug on page 4929.

. Associated trace architectures, that define trace macrocells that implementers can implement with the
associated processor hardware. For more information see the Embedded Trace Macrocell Architecture
Specification and the CoreSight Program Flow Trace Architecture Specification.

The ARM architecture is a Reduced Instruction Set Computer (RISC) architecture with the following RISC
architecture features:

. A large uniform register file.

. A load/store architecture, where data-processing operations only operate on register contents, not directly on
memory contents.

. Simple addressing modes, with all load/store addresses determined from register contents and instruction
fields only.

The architecture defines the interaction of the Processing Element with memory, including caches, and includes a
memory translation system. It also describes how multiple Processing Elements interact with each other and with
other observers in a system.

This document defines the ARMv8-A architecture profile. See Architecture profiles on page A1-32 for more
information.

The ARM architecture supports implementations across a wide range of performance points. Implementation size,
performance, and very low power consumption are key attributes of the ARM architecture.

An important feature of the ARMv8 architecture is backwards compatibility, combined with the freedom for optimal
implementation in a wide range of standard and more specialized use cases. The ARMv8 architecture supports:

. A 64-bit Execution state, AArch64.

. A 32-bit Execution state, AArch32, that is compatible with previous versions of the ARM architecture.

Note

. The AArch32 Execution state is compatible with the ARMv7-A architecture profile, and enhances that
profile to support some features included in the AArch64 Execution state.

. This document describes only the ARMv8-A architecture profile. For the behaviors required by the
ARMV7-A and ARMV7-R architecture profiles, see the ARM® Architecture Reference Manual, ARMv7-A and
ARMV7-R edition.

A1-30 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al.1 About the ARM architecture

Both Execution states support SIMD and floating-point instructions:

. AArch32 state provides:
— SIMD instructions in the base instruction sets, that operate on the 32-bit general-purpose registers.
— Advanced SIMD instructions that operate on registers in the SIMD and floating-point register file.
— Floating-point instructions that operate on registers in the SIMD and floating-point register file.

. AArch64 state provides:
— Advanced SIMD instructions that operate on registers in the SIMD and floating-point register file.
— Floating-point instructions that operate on registers in the SIMD and floating-point register file.

Note

See Conventions on page xxiii for information about conventions used in this manual, including the use of SMALL
CAPITALS for particular terms that have ARM-specific meanings that are defined in the Glossary.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-31
Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al1.2 Architecture profiles

Al.2 Architecture profiles

The ARM architecture has evolved significantly since its introduction, and ARM continues to develop it. Eight

major versions of the architecture have been defined to date, denoted by the version numbers 1 to 8. Of these, the

first three versions are now obsolete.

The generic names AArch64 and AArch32 describe the 64-bit and 32-bit Execution states:

AArch64 Is the 64-bit Execution state, meaning addresses are held in 64-bit registers, and instructions in the
base instruction set can use 64-bit registers for their processing. AArch64 state supports the A64
instruction set.

AArch32 Is the 32-bit Execution state, meaning addresses are held in 32-bit registers, and instructions in the
base instruction sets use 32-bit registers for their processing. AArch32 state supports the T32 and
A32 instruction sets.

Note

The Base instruction set comprises the supported instructions other than the Advanced SIMD and floating-point

instructions.

See sections Execution state on page A1-33 and The ARM instruction sets on page A1-34 for more information.

ARM defines three architecture profiles:

A Application profile, described in this manual:

. Supports a Virtual Memory System Architecture (VMSA) based on a Memory Management
Unit (MMU).

—— Note
An ARMv8-A implementation can be called an AArchv8-A implementation.

. Supports the A64, A32, and T32 instruction sets.

R Real-time profile:

. Supports a Protected Memory System Architecture (PMSA) based on a Memory Protection
Unit (MPU).

. Supports the A32 and T32 instruction sets.

M Microcontroller profile:

. Implements a programmers' model designed for low-latency interrupt processing, with
hardware stacking of registers and support for writing interrupt handlers in high-level
languages.

. Implements a variant of the R-profile PMSA.

. Supports a variant of the T32 instruction set.

Note

This Architecture Reference Manual describes only the ARMv8-A profile.

For information about the R and M architecture profiles, and earlier ARM architecture versions see:

. The ARM® Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

. The ARM®v7-M Architecture Reference Manual.

. The ARM®v6-M Architecture Reference Manual.

Al21 Debug architecture version
The ARM Debug architecture is fully integrated with the architecture, and does not have a separate version number.
Al1-32 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al1.3 ARMvS architectural concepts

Al1.3 ARMv8 architectural concepts

ARMVS introduces major changes to the ARM architecture, while maintaining a high level of consistency with
previous versions of the architecture. The ARMv8 Architecture Reference Manual includes significant changes in
the terminology used to describe the architecture, and this section introduces both the ARMv8 architectural concepts
and the associated terminology.

The following subsections describe key ARMv8 architectural concepts. Each section introduces the corresponding
terms that are used to describe the architecture:

. Execution state.

. The ARM instruction sets on page Al1-34.
. System registers on page Al-34.

. ARMv8 Debug on page A1-35.

Al.3.1 Execution state

The Execution state defines the PE execution environment, including:
. The supported register widths.
. The supported instruction sets.
. Significant aspects of:
— The exception model.
— The Virtual Memory System Architecture (VMSA).
— The programmers’ model.

The Execution states are:

AArch64 The 64-bit Execution state. This Execution state:

. Provides 31 64-bit general-purpose registers, of which X30 is used as the procedure link
register.

. Provides a 64-bit program counter (PC), stack pointers (SPs), and exception link registers
(ELRS).

. Provides 32 128-bit registers for SIMD vector and scalar floating-point support.

. Provides a single instruction set, A64. For more information, see The ARM instruction sets

on page Al-34.

. Defines the ARMv8 Exception model, with up to four Exception levels, ELO - EL3, that
provide an execution privilege hierarchy, see Exception levels on page D1-1490.

. Provides support for 64-bit virtual addressing. For more information, including the limits on
address ranges, see Chapter D4 The AArch64 Virtual Memory System Architecture.

. Defines a number of Process state (PSTATE) elements that hold PE state. The A64
instruction set includes instructions that operate directly on various PSTATE elements.

. Names each system register using a suffix that indicates the lowest Exception level at which
the register can be accessed.

AArch32 The 32-bit Execution state. This Execution state:

. Provides 13 32-bit general-purpose registers, and a 32-bit PC, SP, and link register (LR). The
LR is used as both an ELR and a procedure link register.

Some of these registers have multiple banked instances for use in different PE modes.

. Provides a single ELR, for exception returns from Hyp mode.
. Provides 32 64-bit registers for Advanced SIMD vector and scalar floating-point support.
. Provides two instruction sets, A32 and T32. For more information, see The ARM instruction

sets on page A1-34.

. Supports the ARMv7-A exception model, based on PE modes, and maps this onto the
ARMV8 Exception model, that is based on the Exception levels.

. Provides support for 32-bit virtual addressing.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-33
Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al1.3 ARMvS architectural concepts

. Defines a number of Process state (PSTATE) elements that hold PE state. The A32 and T32
instruction sets include instructions that operate directly on various PSTATE elements, and
instructions that access PSTATE by using the Application Program Status Register (APSR)
or the Current Program Status Register (CPSR).

Later subsections give more information about the different properties of the Execution states.

Transitioning between the AArch64 and AArch32 Execution states is known as interprocessing. The PE can move
between Execution states only on a change of Exception level, and subject to the rules given in Interprocessing on
page D1-1606. This means different software layers, such as an application, an operating system kernel, and a
hypervisor, executing at different Exception levels, can execute in different Execution states.

Al1.3.2 The ARM instruction sets
In ARMV8 the possible instruction sets depend on the Execution state:
AArch64 AArch64 state supports only a single instruction set, called A64. This is a fixed-length instruction
set that uses 32-bit instruction encodings.
For information on the A64 instruction set, see Chapter C3 A64 Instruction Set Overview.
AArch32 AArch32 state supports the following instruction sets:
A32 This is a fixed-length instruction set that uses 32-bit instruction encodings.
T32 This is a variable-length instruction set that uses both 16-bit and 32-bit instruction
encodings.
In previous documentation, these instruction sets were called the ARM and Thumb instruction sets.
ARMVS extends each of these instruction sets. In AArch32 state, the Instruction set state determines
the instruction set that the PE executes.
For information on the A32 and T32 instruction sets, see Chapter F1 The AArch32 Instruction Sets
Overview.
The ARMVS instruction sets support SIMD and scalar floating-point instructions. See Floating-point and Advanced
SIMD support on page A1-46.
A1.3.3 System registers
System registers provide control and status information of architected features.
The System registers use a standard naming format: <register_name>.<bit_field_name> to identify specific
registers as well as control and status bits within a register.
Bits can also be described by their numerical position in the form <register_name>[x:y] or the generic form
bits[x:y].
In addition, in AArch64 state, most register names include the lowest Exception level that can access the register as
a suffix to the register name:
. <register_name>_ELx, where x is 0, 1, 2, or 3.
For information about Exception levels, see Exception levels on page D1-1490.
The System registers comprise:
. General system control registers.
. Debug registers.
. Generic Timer registers.
. Optionally, Performance Monitor registers.
. Optionally, Trace registers.
. Optionally, Generic Interrupt Controller (GIC) CPU interface registers.
The Embedded Trace Macrocell Architecture Specification, ETMv4 defines the Trace registers. This ARMv8
reference manual describes all the other System registers.
Al-34 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al1.3 ARMvS architectural concepts

For information about the AArch64 System registers, see Chapter D7 AArch64 System Register Descriptions.

For information about the AArch32 System registers, see Chapter G6 AArch32 System Register Descriptions.

The ARM Generic Interrupt Controller CPU interface

From version 3 of the ARM Generic Interrupt Controller architecture, GICv3, the GIC architecture specification
defines a system register interface to the GIC CPU interface. The System register descriptions in this ARMv8
manual include these registers, see Generic Interrupt Controller CPU interface registers on page D7-2286.

Note
The programmers’ model for earlier versions of the GIC architecture is wholly memory-mapped.

For more information about the ARM Generic Interrupt Controller, see the appropriate ARM Generic Interrupt
Controller Architecture Specification.

Al3.4 ARMvS8 Debug

ARMV8 supports the following:

Self-hosted debug

In this model, the PE generates debug exceptions. Debug exceptions are part of the ARMv8
Exception model.

External debug

In this model, debug events cause the PE to enter Debug state. In Debug state the PE is controlled
by an external debugger.

All ARMv8 implementations support both models. The model chosen by a particular user depends on the debug
requirements during different stages of the design and development life cycle of the product. For example, external
debug might be used during debugging of the hardware implementation and OS bring-up, and self-hosted debug
might be used during application development.

For more information about self-hosted debug:
. In AArch64 state, see Chapter D2 AArch64 Self-hosted Debug.
. In AArch32 state, see Chapter G2 AArch32 Self-hosted Debug.

For more information about external debug, see Part H External Debug.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-35
Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

Al.4

Supported data types

The ARMVS architecture supports the following integer data types:
Byte 8 bits.

Halfword 16 bits.

Word 32 bits.

Doubleword 64 bits.

Quadword 128 bits.

The architecture also supports the following floating-point data types:

. Half-precision, see Half-precision floating-point formats on page A1-40 for details.

. Single-precision, see Single-precision floating-point format on page A1-42 for details.

. Double-precision, see Double-precision floating-point format on page A1-43 for details.

It also supports:
. Fixed-point interpretation of words and doublewords. See Fixed-point format on page A1-44.

. Vectors, where a register holds multiple elements, each of the same data type. See Vector formats on
page A1-37 for details.

The ARMVS architecture provides two register files:
. A general-purpose register file.
. A SIMD and floating-point register file.

In each of these, the possible register widths depend on the Execution state.

In AArch64 state:

. A general-purpose register file contains 64-bit registers:
— Many instructions can access these registers as 64-bit registers or as 32-bit registers, using only the
bottom 32 bits.
. A SIMD and floating-point register file contains 128-bit registers:
— The quadword integer data types only apply to the SIMD and floating-point register file.
— The floating-point data types only apply to the SIMD and floating-point register file.

— While the AArch64 vector registers support 128-bit vectors, the effective vector length can be 64-bits
or 128-bits depending on the A64 instruction encoding used, see Instruction Mnemonics on
page C1-117

For more information on the register files in AArch64, see Registers in AArch64 Execution state on page B1-59.
In AArch32 state:

. A general-purpose register file contains 32-bit registers:
— Two 32-hit registers can support a doubleword.
— Vector formatting is supported, see Figure A1-4 on page A1-40.

. A SIMD and floating-point register file contains 64-bit registers:
— AArch32 state does not support quadword integer or floating-point data types.

Note
Two consecutive 64-bit registers can be used as a 128-bit register.

For more information on the register files in AArch32, see The general-purpose registers, and the PC, in AArch32
state on page E1-2376

Al1-36

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

Al4.1 Vector formats

In an implementation that includes the SIMD instructions that operate on the SIMD and floating-point register file,
a register can hold one or more packed elements, all of the same size and type. The combination of a register and a
data type describes a vector of elements. The vector is considered to be an array of elements of the data type
specified in the instruction. The number of elements in the vector is implied by the size of the data elements and the
size of the register.

Vector indices are in the range 0 to (number of elements — 1). An index of O refers to the least significant end of the
vector.

Vector formats in AArch64 state
In AArch64 state, the SIMD and floating-point registers can be referred to as VVn, where n is a value from 0 to 31.

The SIMD and floating-point registers support three data formats for loads, stores and data processing operations:
. A single, scalar, element in the least significant bits of the register.

. A 64-bit vector of byte, halfword, or word elements.

. A 128-hit vector of byte, halfword, word or doubleword elements.

The element sizes are defined in Table Al1-1 with the vector format described as:
. For a 128-bit vector: Vn{.2D, .4S, .8H, .16B}.
. For a 64-bit vector: Vn{.1D, .2S, .4H, .8B}.

Table A1-1 SIMD elements

Mnemonic Size

B 8 bits
H 16 bits
S 32 bits
D 64 bits
Figure Al-1 on page A1-38 shows the SIMD vectors in AArch64 state.
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-37

ID121714 Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

127 12111 96 95 80 79 64 63 48 47 3231 1615 0
Vn
128-bit vector of 64-bit elements (.2D) .D .D
1] [0]
128-bit vector of 32-bit elements (.4S) .S S .S S
(3] [2 (1] [
128-bit vector of 16-bit elements (.8H) H H H H H H H H
[7] [6] (8] [4] [3] [2] 11 [
128-bit vector of 8-bit elements (.16B) (B| B| B|.B|(.B|(B| B|.B|B|B|B|.B|[B|.B|B|.B

[15] [14] [13] [12] (1] [10] [9] [8] [7]1 [6] [5] [4] (3] [21 [1] [O]
63 48 47 3231 16 15 0
Vn

64-bit vector of 32-bit elements (.2S) .S .S

(1] [0

64-bit vector of 16-bit elements (.4H) H H H H

(3] [2] [1] [0]

64-bit vector of 8-bit elements (8B) | B|.B|.B|.B|.B|.B|.B|.B
[7] [6] [5] [41 [3] [21 [1]1 [O]

Figure A1-1 SIMD vectors in AArch64 state

Vector formats in AArch32 state

Table A1-2 shows the available formats. Each instruction description specifies the data types that the instruction
supports.

Table A1-2 Advanced SIMD data types in AArch32

Data type specifier Meaning

.<size> Any element of <size> bits

.F<size> Floating-point number of <size> bits

I<sizes> Signed or unsigned integer of <size> bits
.P<size> Polynomial over {0, 1} of degree less than <size>
.S<size> Signed integer of <size> bits

.U<size> Unsigned integer of <size> bits

Polynomial arithmetic over {0, 1} on page A1-45 describes the polynomial data type.
The .F16 data type is the half-precision data type selected by the FPSCR.AHP bit.

The .F32 data type is the ARM standard single-precision floating-point data type, see Single-precision
floating-point format on page Al1-42.

The instruction definitions use a data type specifier to define the data types appropriate to the operation. Figure Al1-2
on page A1-39 shows the hierarchy of the Advanced SIMD data types.

A1-38 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

S8
18
8 us
: P8
516
16 116 .U16
: P16t
F16
832
132
u32
32 us
F32
564
6 164 .U64
: P64t

T Output format only. See VMULL instruction description.

T Available only if the Cyptographic Extension is implemented.
See VMULL instruction description.

Figure A1-2 Advanced SIMD data type hierarchy in AArch32
For example, a multiply instruction must distinguish between integer and floating-point data types.

An integer multiply instruction that generates a double-width (long) result must specify the input data types as
signed or unsigned. However, some integer multiply instructions use modulo arithmetic, and therefore do not have
to distinguish between signed and unsigned inputs.

Figure A1-3 on page A1-40 shows the Advanced SIMD vectors in AArch32 state.

Note

In AArch32 state, a pair of even and following odd numbered doubleword registers can be concatenated and treated
as a single quadword register.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-39
ID121714 Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

Al4.2

128-bit vector of double-precision
(64-bit) elements

128-bit vector of single-precision
(32-bit) elements

128-bit vector of 16-bit elements

128-bit vector of 8-bit elements

127 112111 96 95 80 79 64 63 48 47 32 31 16 15 0
Qn
.64 .64
(1] 0]
.32 .32 .32 .32
(3] (2] (1 0]

.16 .16 .16 .16 .16 .16 .16 .16
[7] (6] (3] [4] [3] [2 (1] [0
8|18(8)]8|8|8(8|]8|8[8|]8|8|8(38]|.8].3
[15] [14] [13] [12] [11] [10] [9] (8] [71 [6] [5] [4] [3] [2] [1]1 [O]

63 48 47 32 31 16 15 0
Dn
64-bit vector of 32-bit elements .32 .32
(1] [0]
64-bit vector of 16-bit elements 16 .16 16 16
[3] [2 (1] [0
64-bit vector of 8-bitelements | 8 | 8| .8 .8|.8| .8]|.8].8
(71 [6] [51 [4] [3 [2] [1] [0]

Figure A1-3 Advanced SIMD vectors in AArch32

The AArch32 general-purpose registers support vectors formats for use by the SIMD instructions in the Base
instruction set. Figure A1-4 shows these formats, that means that a general-purpose register can be treated as either

two halfwords or four bytes.

32-bit general-purpose register
as a set of two halfwords

32-bit general-purpose register
as a set of four bytes

31

24 23

16 15

Rn

16

.16

(1]

[0]

8

.8

8

Half-precision floating-point formats

(3]

ARMV8 supports two half-precision floating-point formats:
o IEEE half-precision, as described in the IEEE 754-2008 standard.

. Alternative half-precision.

Note

(2]

]

[0]

Figure Al1-4 Vector formatting in AArch32

Half-precision floating-point formats can only be converted to and from other floating-point formats. They cannot
be used in any other data processing operations. This applies to both AArch32 state and AArch64 state.

A1-40

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM DDI 0487A.e

ID121714

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

The description of IEEE half-precision includes ARM-specific details that are left open by the standard, and is only
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs and signed zeros, see the IEEE 754 standard.

For both half-precision floating-point formats, the layout of the 16-bit format is the same. The format is:

1514 10 9 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.
0 < exponent < 0x1F
The value is a normalized number and is equal to:
(~1)S x 2(exponent-15) x (1 fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 x 10-5,
The maximum positive normalized number is (2 — 2-10) x 215, or 65504.
Larger normalized numbers can be expressed using the alternative format when the
exponent == Ox1F.
exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 when S==0
-0 when S==1.

fraction =0

The value is a denormalized number and is equal to:
(-1)S x 2-14 x (0.fraction)

The minimum positive denormalized number is 2-24, or approximately 5.960 x 10-8.

exponent == 0x1F
The value depends on which half-precision format is being used:

IEEE half-precision
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==
The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too
big to be represented accurately as a normalized number.

-infinity ~ When S==1. This represents all negative numbers with an
absolute value that is too big to be represented accurately as a
normalized number.

fraction =0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction
bit, bit[9]:
bit[9] == 0 The NaN is a signaling NaN. The sign bit can take any value,
and the remaining fraction bits can take any value except all
Zeros.

bit[9] == 1 The NaN is a quiet NaN. The sign bit and remaining fraction
bits can take any value.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. Al-41
ID121714 Non-Confidential - Beta

A1l Introduction to the ARMv8 Architecture

Al.4 Supported data types

Alternative half-precision

The value is a normalized number and is equal to:
-1S x 216 x (1.fraction)
The maximum positive normalized number is (2-2-10) x 216 or 131008.

A1.4.3 Single-precision floating-point format

The single-precision floating-point format is as defined by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word with the format:

3130

23 22 0

S

exponent

fraction

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < OxFF

The value is a normalized number and is equal to:
(_1)5 x 2(exponent - 127) x (1.fraction)

The minimum positive normalized number is 2-126, or approximately 1.175 x 10-38,

The maximum positive normalized number is (2 — 2-23) x 2127, or approximately 3.403 x 1038,

exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 When S==0.
-0 When S==1.
These usually behave identically. In particular, the result is equal if +0 and -0 are
compared as floating-point numbers. However, they yield different results in some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer comparison of the two words.

fraction =0

The value is a denormalized number and is equal to:
(=1)S x 2-126 x (0.fraction)

The minimum positive denormalized number is 2-149, or approximately 1.401 x 10-45,

Denormalized numbers are always flushed to zero in AArch32 Advanced SIMD processing. They
are optionally flushed to zero in floating-point processing and AArch64 SIMD. For details see
Flush-to-zero on page A1-49.

exponent == oxFF

The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-infinity ~ When S==1. This represents all negative numbers with an absolute value
that is too big to be represented accurately as a normalized number.

Al-42

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

fraction =0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction bit, bit[22]:
bit[22] ==
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.
bit[22] ==

The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

For details of the default NaN see NaN handling and the Default NaN on page A1-50.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

Al4.4 Double-precision floating-point format

The double-precision floating-point format is as defined by the IEEE 754 standard. Double-precision floating-point
is supported by both floating-point and SIMD instructions in AArch64 state, and only by floating-point instructions
in AArch32 state.

This description includes implementation-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs and signed zeros, see the IEEE 754 standard.

A double-precision value is a 64-bit doubleword, with the format:

63 62 .« 52 51 32 31 0

S exponent fraction

((((((
)T)T)T

Double-precision values represent numbers, infinities and NaNs in a similar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF
The value is a normalized number and is equal to:
(~1)S x 2(exponent-1023) x (1 fraction)
The minimum positive normalized number is 2-1922, or approximately 2.225 x 10-308,

The maximum positive normalized number is (2 — 2-52) x 21023 or approximately 1.798 x 10308,

exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros that behave in the same way as the two
single-precision zeros:
+0 when S==0
-0 when S==1.

fraction =0
The value is a denormalized number and is equal to:
(-1)S x 2-1022 x (0.fraction)

The minimum positive denormalized number is 2-1074, or approximately 4.941 x 10-324,

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-43

ID121714 Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

Optionally, denormalized numbers are flushed to zero in floating-point calculations. For details see
Flush-to-zero on page A1-49.

exponent == Ox7FF
The value is either an infinity or a NaN, depending on the fraction bits:
fraction ==0
the value is an infinity. As for single-precision, there are two infinities:
+infinity When S==0.
-infinity When S==1.
fraction =0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
The two types of NaN are distinguished by their most significant fraction bit, bit[51] of
the doubleword:
bit[51] ==
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.
bit[51] ==
The NaN is a quiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN see NaN handling and the Default NaN on page A1-50.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

Al.45 Fixed-point format

Fixed-point formats are used only for conversions between floating-point and fixed-point values. They apply to
general-purpose registers.

Fixed-point values can be signed or unsigned, and can be 16-bit or 32-bit. Conversion instructions take an argument
that specifies the number of fraction bits in the fixed-point number. That is, it specifies the position of the binary
point.

Al1.4.6 Conversion between floating-point and fixed-point values

ARMV8 supports the conversion of a scalar floating-point to or from a signed or unsigned fixed-point value in a
general-purpose register.

The instruction argument #fbits indicates that the general-purpose register holds a fixed-point number with fhits bits
after the binary point, where fbits is in the range 1 to 64 for a 64-bit general-purpose register, or 1 to 32 for a 32-bit
general-purpose register.
More specifically:
. For a 64-bit register Xq:

— The integer part is Xq[63:#fbits].

— The fractional part is Xq[(#fbits-1):0].
. For a 32-bit register Wy or Ry:

— The integer part is Wy[31:#fbits] or Rq[31:#fbits].

— The fractional part is W[(#fbits-1):0] or Ry[(#fbits-1):0].

Al-44 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al.4 Supported data types

These instructions might generate the following exceptions:

Invalid Operation ~ When the floating-point input is NaN or Infinity or when a numerical value cannot be
represented within the destination register.

Inexact When the numeric result differs from the input.

Input Denormal When flush-to-zero mode is enabled and the denormal input is replaced by a zero.

Note
An out of range fixed-point result is saturated to the destination size.

Al1.4.7 Polynomial arithmetic over {0, 1}

Some SIMD instructions that operate on SIMD and floating-point registers can operate on polynomials over {0, 1},
see Supported data types on page A1-36. The polynomial data type represents a polynomial in x of the form b,_;xn-1
+ ... + byx + bg where by is bit[k] of the value.

The coefficients 0 and 1 are manipulated using the rules of Boolean arithmetic:

. 0+0=1+1=0

. 0+1=1+0=1

. 0x0=0x1=1x0=0

. 1x1=1

That is:

. Adding two polynomials over {0, 1} is the same as a bitwise exclusive OR.

. Multiplying two polynomials over {0, 1} is the same as integer multiplication except that partial products are
exclusive-ORed instead of being added.

A64, A32 and T32 provide instructions for performing polynomial multiplication of 8-bit values.

. For AArch32, see VMUL (integer and polynomial) on page F8-3551 and VMULL (integer and polynomial)
on page F8-3556.

. For AArch64, see PMUL on page C7-1151 and PMULL, PMULL2 on page C7-1153.

The Cryptographic Extension adds the ability to perform long polynomial multiplies of 64-bit values. See PMULL,
PMULL2 on page C7-1153.

Pseudocode description of polynomial multiplication
In pseudocode, polynomial addition is described by the EOR operation on bitstrings.
Polynomial multiplication is described by the PolynomialMult() function:

// PolynomialMult()

bits(M+N) PolynomialMult(bits(M) opl, bits(N) op2)
result = Zeros(M+N);
extended_op2 = ZeroExtend(op2, M+N);
for i=0 to M-1
if opl<i> == ‘1’ then
result = result EOR LSL(extended_op2, i);
return result;

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. Al1-45
ID121714 Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
AL1.5 Floating-point and Advanced SIMD support

Al5 Floating-point and Advanced SIMD support
Note
In AArch32 state, the SIMD instructions that operate on SIMD and floating-point registers are always described as
the Advanced SIMD instructions, to distinguish them from the SIMD instructions in the base instruction sets, that
operate on the 32-bit general-purpose registers. The A64 instruction set does not provide any SIMD instructions that
operate on the general-purpose registers, and therefore some AArch64 state descriptions use SIMD as a synonym
for Advanced SIMD. Unless the context clearly indicates otherwise, this section describes the support for SIMD
instructions that operate on SIMD and floating-point registers.
ARMV8 can support the following levels of support for floating-point and Advanced SIMD instructions:
. Full floating-point and SIMD support without exception trapping.
. Full floating-point and SIMD support with exception trapping.
. No floating-point or SIMD support. This option is licensed only for implementations targeting specialised
markets.
Note
All systems that support standard operating systems with rich application environments provide hardware
support for floating-point and Advanced SIMD. It is a requirement of the ARM Procedure Call Standard for
AArch64, see Procedure Call Standard for the ARM 64-bit Architecture.
ARMV8 supports single-precision (32-bit) and double-precision (64-bit) floating-point data types and arithmetic as
defined by the IEEE 754 floating-point standard. It also supports the half-precision (16-bit) floating-point data type
for data storage only, by supporting conversions between single-precision and half-precision data types and
double-precision and half-precision data types.
The SIMD instructions provide packed Single Instruction Multiple Data (SIMD) and single-element scalar
operations, and support:
. Single-precision and double-precision arithmetic in AArch64 state.
. Single-precision arithmetic only in AArch32 state.
Floating-point support in AArch64 state SIMD is IEEE 754-2008 compliant with:
. Configurable rounding modes.
. Configurable Default NaN behavior.
. Configurable Flush-to-zero behavior.
Floating-point computation using AArch32 Advanced SIMD instructions remains unchanged from ARMv7. A32
and T32 Advanced SIMD floating-point always uses ARM standard floating-point arithmetic and performs
IEEE 754 floating-point arithmetic with the following restrictions:
. Denormalized numbers are flushed to zero, see Flush-to-zero on page A1-49.
. Only default NaNs are supported, see NaN handling and the Default NaN on page A1-50.
. The Round to Nearest rounding mode is used.
. Untrapped floating-point exception handling is used for all floating-point exceptions.
ARMV8 introduces new instructions for AArch32 state:
. Floating-point selection, see VSELEQ, VSELGE, VSELGT, VSELVS on page F8-3706.
. Floating-point maximum and minimum numbers, see VMAXNM on page F8-3491 and VMINNM on
page F8-3498.
. Floating-point integer conversions with directed rounding modes, see:
— VCVTA (Advanced SIMD) on page F8-3393 and VCVTA (floating-point) on page F8-3395.
— VCVTM (Advanced SIMD) on page F8-3400 and VCVTM (floating-point) on page F8-3402.
— VCVTN (Advanced SIMD) on page F8-3404 and VCVTN (floating-point) on page F8-3406.
— VCVTP (Advanced SIMD) on page F8-3408 and VCVTP (floating-point) on page F8-3410.
Al-46 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
AL1.5 Floating-point and Advanced SIMD support

. Floating-point round to integral floating-point, see:

— VRINTA (Advanced SIMD) on page F8-3662 and VRINTA (floating-point) on page F8-3664.

— VRINTM (Advanced SIMD) on page F8-3666 and VRINTM (floating-point) on page F8-3668.
— VRINTN (Advanced SIMD) on page F8-3670 and VRINTN (floating-point) on page F8-3672.
— VRINTP (Advanced SIMD) on page F8-3674 and VRINTP (floating-point) on page F8-3676.

— VRINTR on page F8-3678.

— VRINTX (Advanced SIMD) on page F8-3680 and VRINTX (floating-point) on page F8-3682.

— VRINTZ (Advanced SIMD) on page F8-3684 and VRINTZ (floating-point) on page F8-3686.

. Floating-point conversions between half-precision and double-precision, see VCVTB on page F8-3397 and
VCVTT on page F8-3415.

If floating-point exception trapping is supported, floating-point exceptions, such as overflow or division by zero,
can be handled without trapping. This applies to both floating-point and SIMD operations. When handled in this
way, a floating-point exception causes a cumulative status register bit to be set to 1 and a default result to be
produced by the operation. For more information about floating-point exceptions, see Supported data types on
page A1-36.

In AArch64 state, the following registers control floating-point operation and return floating-point status
information:
. The Floating-Point Control Register, FPCR, controls:

— The half-precision format where applicable, FPCR.AHP bit.

— Default NaN behavior, FPCR.DN bit.

— Flush to zero behavior, FPCR.FZ bit.

— Rounding mode support, FPCR.Rmode field.

— Len and Stride fields associated with AArch32 execution, and only supported for a context save and
restore in AArch64. These fields are obsolete in ARMv8 and can be implemented as RAZ/WI. If they
are implemented as R/W and are programmed to a nonzero value, they make some AArch32
floating-point instructions UNDEFINED.

— Floating-point exception trap controls, the FPCR.{IDE, IXE, UFE, OFE, DZE, IOE} bits, see
Floating-point exception traps on page D1-1550. In an implementation that does not support trapping
of floating-point exceptions these bits are RESO.

. The Floating-Point Status Register, FPSR, provides:

— Cumulative floating-point exceptions flags, FPSR.{IDC, IXC, UFC, OFC, DZC, I0C and QC}.
— TheAArch32 floating-point comparison flags {N,Z,C,V}. These bits are Res0 if AArch32
floating-point is not supported.
Note

In AArch64, the process state flags, PSTATE.{N,Z,C,V} are used for all data processing compares and
any associated conditional execution.

AArch32 state provides a single Floating-Point Status and Control Register, FPSCR, combining the FPCR and
FPSR fields.

For system level information about the SIMD and floating-point support, see Advanced SIMD and floating-point
support on page G1-3896.

Al15.1 Instruction support
The floating-point and SIMD support includes the following types of instructions:

. Load and store for single elements and vectors of multiple elements.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. Al1-47
ID121714 Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
AL1.5 Floating-point and Advanced SIMD support

Note
Single elements are also referred to as scalar elements.

. Data processing on single and multiple elements for both integer and floating-point data types.

. Floating-point conversion:
— Half-precision, single-precision, and double-precision conversions.
— Single-precision, double-precision, and fixed point integer conversions.
— Single-precision, double-precision, and integer conversions.

. Floating-point rounding.

For more information on the floating-point and SIMD instructions in AArch64 state, see Chapter C3 A64
Instruction Set Overview.

For more information on the floating-point and Advanced SIMD instructions in AArch32 state, see Chapter F5 T32
and A32 Instruction Sets Advanced SIMD and floating-point Encodings

Al5.2 Floating-point standards, and terminology
The ARM includes support for all the required features of ANSI/IEEE Std 754-2008, IEEE Standard for Binary
Floating-Point Arithmetic, referred to as IEEE 754-2008. However, some terms in this manual are based on the
1985 version of this standard, referred to as IEEE 754-1985:
. ARM floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.
. References to IEEE 754 that do not include the issue year apply to either issue of the standard.
Table A1-3 shows how the terminology in this manual differs from that used in IEEE 754-2008.
Table A1-3 Floating-point terminology
This manual IEEE 754-2008
Normalized 2 Normal
Denormal, or denormalized Subnormal
Round towards Minus Infinity (RM) roundTowardsNegative
Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven
Round to Nearest with Ties to Away roundTiesToAway
Rounding mode Rounding-direction attribute
a. Normalized number is used in preference to normal number, because of the other
specific uses of normal in this manual.
A15.3 ARM standard floating-point input and output values
ARMV8 provides full IEEE 754 floating-point arithmetic support. In AArch32, floating-point operations performed
using Advanced SIMD instructions are limited to ARM standard floating-point operation, regardless of the selected
rounding mode in the FPSCR. Unlike AArch32, AArch64 SIMD floating point arithmetic is performed using the
rounding mode selected by the FPCR.
Al-48 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
AL1.5 Floating-point and Advanced SIMD support

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

. Zeros.

. Normalized numbers.

. Denormalized numbers are flushed to 0 before floating-point operations, see Flush-to-zero.
. NaNs.

. Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest (roundTiesToEven) rounding mode defined
by the IEEE 754 standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the IEEE 754
standard:

. Zeros.
. Normalized numbers.
. Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero.
. NaNs produced in floating-point operations are always the default NaN, see NaN handling and the Default
NaN on page A1-50.
. Infinities.
Al54 Flush-to-zero

The performance of floating-point processing can be reduced when doing calculations involving denormalized
numbers and Underflow exceptions. In many algorithms, this performance can be recovered, without significantly
affecting the accuracy of the final result, by replacing the denormalized operands and intermediate results with
zeros. To permit this optimization, ARM floating-point implementations have a special processing mode called
Flush-to-zero mode. AArch32 Advanced SIMD floating-point instructions always use Flush-to-zero mode.

Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

. All inputs to floating-point operations that are double-precision denormalized numbers or single-precision
denormalized numbers are treated as though they were zero. This causes an Input Denormal exception, but
does not cause an Inexact exception. The Input Denormal exception occurs only in Flush-to-zero mode.

In AArch32, the FPSCR contains a cumulative exception bit FPSCR.IDC and optional trap enable bit
FPSCR.IDE corresponding to Input Denormal exception.

In AArch64 the FPSR contains a cumulative exception bit FPSR.IDC and optional trap enable bit FPCR.IDE
corresponding to the Input Denormal exception.

The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

. The result of a floating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:
0 < Abs(result) < MinNorm, where:
— MinNorm is 2-126 for single-precision
— MinNorm is 2-1022 for double-precision.

This causes the FPSR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for the
operation.

Underflow exceptions occur only when a result is flushed to zero.

In all implementations Underflow exceptions that occur in Flush-to-zero mode are always treated as
untrapped, even when the Underflow trap enable bit, FPCR.UFE, is set to 1.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-49
Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
AL1.5 Floating-point and Advanced SIMD support

. An Inexact exception does not occur if the result is flushed to zero, even though the final result of zero is not
equivalent to the value that would be produced if the operation were performed with unbounded precision
and exponent range.

When an input or a result is flushed to zero the value of the sign bit of the zero is preserved. That is, the sign bit of
the zero matches the sign bit of the input or result that is being flushed to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or results
from floating-point operations.

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754 compatibility
is a requirement. Flush-to-zero mode must be used with care. Although it can improve performance on some
algorithms, there are significant limitations on its use. These are application dependent:

. On many algorithms, it has no noticeable effect, because the algorithm does not normally use denormalized
numbers.

. On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results of the
algorithm.

Al15.5 NaN handling and the Default NaN

The IEEE 754 standard specifies that:

. An operation that produces an Invalid Operation floating-point exception generates a quiet NaN as its result
if that exception is untrapped.

. An operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN as its
result.

The floating-point processing behavior when Default NaN mode is disabled adheres to this, with the following

additions:

. If an untrapped Invalid Operation floating-point exception is produced, the quiet NaN result is derived from:
— The first signaling NaN operand, if the exception was produced because at least one of the operands

is a signaling NaN.

— Otherwise, the default NaN.

. If an untrapped Invalid Operation floating-point exception is not produced, but at least one of the operands
is a quiet NaN, the result is derived from the first quiet NaN operand.

Depending on the operation, the exact value of a derived quiet NaN result may differ in both sign and number of

fraction bits from its source.For a quiet NaN result derived from signaling NaN operand, the most-significant

fraction bit is set to 1.

Note

. In these descriptions, first operand relates to the left-to-right ordering of the arguments to the pseudocode
function that describes the operation.

. The IEEE 754 standard specifies that the sign bit of a NaN has no significance.

The floating-point and SIMD processing behavior when Default NaN mode is enabled is that the Default NaN is

the result of all floating-point operations that either:

. Generate untrapped Invalid Operation floating-point exceptions.

. Have one or more quiet NaN inputs, but no signaling NaN inputs.

Table Al-4 on page A1-51 shows the format of the default NaN for ARM floating-point operations.

Default NaN mode is selected for the floating-point processing by setting the FPCR.DN bit to 1.

A1-50 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
AL1.5 Floating-point and Advanced SIMD support

Other aspects of the functionality of the Invalid Operation exception are not affected by Default NaN mode. These

are that:
. If untrapped, it causes the FPSR.IOC bit be set to 1.
. If trapped, it causes a user trap handler to be invoked.
Table A1-4 Default NaN encoding
Half-precision, IEEE Format Single-precision Double-precision
Sign bit 0 0 0
Exponent 0x1F OxFF 0x7FF
Fraction Bit[9] == 1, bits[8:0] == bit[22] == 1, bits[21:0] == bit[51] == 1, bits[50:0] ==
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-51

ID121714 Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al1.6 Cryptographic Extension

Al.6 Cryptographic Extension

The presence of this Extension in an implementation is subject to export license controls. The Cryptographic
Extension is an extension of the SIMD support and operates on the vector register file. It provides instructions for
the acceleration of encryption and decryption to support the following:

. AES
. SHA1
. SHA2-256

Large polynomial multiplies are included as part of the Cryptographic Extension, see PMULL, PMULL2 on
page C7-1153.

Al1-52 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Al Introduction to the ARMv8 Architecture
Al1.7 The ARM memory model

Al.7 The ARM memory model

The ARM memory model supports:

. Generating an exception on an unaligned memory access.

. Restricting access by applications to specified areas of memory.

. Translating virtual addresses provided by executing instructions into physical addresses.
. Altering the interpretation of multi-byte data between big-endian and little-endian.

. Controlling the order of accesses to memory.

. Controlling caches and address translation structures.

. Synchronizing access to shared memory by multiple PEs.

Virtual address (VA) support depends on the Execution state, as follows:

AArch64 state

Supports 64-bit virtual addressing, with the Translation Control Register determining the supported
VA range. Execution at EL1 and ELO supports two independent VA ranges, each with its own
translation controls.

AArch32 state

Supports 32-bit virtual addressing, with the Translation Control Register determining the supported
VA range. For execution at EL1 and ELO, system software can split the VA range into two
subranges, each with its own translation controls.

The supported physical address space is IMPLEMENTATION DEFINED, and can be discovered by system software.

Regardless of the Execution state, the Virtual Memory System Architecture (VMSA) can translate VAs to blocks or
pages of memory anywhere within the supported physical address space.

For more information, see:

For execution in AArch64 state
. Chapter B2 The AArch64 Application Level Memory Model.
. Chapter D3 The AArch64 System Level Memory Model.
. Chapter D4 The AArch64 Virtual Memory System Architecture.

For execution in AArch32 state
. Chapter E2 The AArch32 Application Level Memory Model.
. Chapter G3 The AArch32 System Level Memory Model.
. Chapter G4 The AArch32 Virtual Memory System Architecture.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. A1-53
Non-Confidential - Beta

Al Introduction to the ARMv8 Architecture
Al1.7 The ARM memory model

Al-54 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Part B

The AArch64 Application Level Architecture

Chapter B1
The AArch64 Application Level Programmers’ Model

This chapter gives an application level view of the ARM programmers’ model. It contains the following sections:
. About the Application level programmers’ model on page B1-58.

. Registers in AArch64 Execution state on page B1-59.

. Software control features and ELO on page B1-65.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B1-57
ID121714 Non-Confidential - Beta

B1 The AArch64 Application Level Programmers’ Model
B1.1 About the Application level programmers’ model

B1l.1

About the Application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system, or higher level of system software. However, some knowledge of the system
information is needed to put the Application level programmers' model into context.

Depending on the implementation choices, the architecture supports multiple levels of execution privilege,
indicated by different Exception levels that number upwards from ELO to EL3. ELO corresponds to the lowest
privilege level and is often described as unprivileged. The Application level programmers’ model is the
programmers’ model for software executing at ELO. For more information see Exception levels on page D1-1490.

System software determines the Exception level, and therefore the level of privilege, at which software runs. When
an operating system supports execution at both EL1 and ELO, an application usually runs unprivileged at ELO. This:

. Permits the operating system to allocate system resources to an application in a unique or shared manner.

. Provides a degree of protection from other processes, and so helps protect the operating system from
malfunctioning software.

This chapter indicates where some system level understanding is necessary, and where relevant it gives a reference
to the system level description.

Execution at any Exception level above ELO is often referred to as privileged execution.

For more information on the system level view of the architecture refer to Chapter D1 The AArch64 System Level
Programmers’ Model.

B1-58

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

B1.2 Registers in AArch64 Execution state

This section describes the registers and process state visible at ELO when executing in the AArch64 state. It includes
the following:

. Registers in AArch64 state
. Process state, PSTATE on page B1-62
. System registers on page B1-63

B1.2.1 Registers in AArch64 state

In the AArch64 application level view, an ARM Processing element has:

R0-R30

SP

PC

V0-V3l

63

31 general-purpose registers, RO to R30. Each register can be accessed as:
. A 64-bit general-purpose register named X0 to X30.

. A 32-bit general-purpose register named W0 to W30.

See the register name mapping in Figure B1-1.

3231 0

Rn

< Wn

A

A 4

Xn

Figure B1-1 General-purpose register naming
The X30 general-purpose register is used as the procedure call link register.

—— Note

In instruction encodings, the value 0b11111 (31) is used to indicate the ZR (zero register). This
indicates that the argument takes the value zero, but does not indicate that the ZR is implemented
as a physical register.

A 64-bit dedicated Stack Pointer register. The least significant 32-bits of the stack-pointer can be
accessed via the register name WSP.

The use of SP as an operand in an instruction, indicates the use of the current stack pointer.

Note

Stack pointer alignment to a 16-byte boundary is configurable at EL1. For more information see the
Procedure Call Standard for the ARM 64-bit Architecture.

A 64-bit Program Counter holding the address of the current instruction.

Software cannot write directly to the PC. It can only be updated on a branch, exception entry or
exception return.

Note

Attempting to execute an A64 instruction that is not word-aligned generates an Alignment fault, see
PC alignment checking on page D1-15009.

32 SIMD and floating-point registers, VO to VV31. Each register can be accessed as:
. A 128-bit register named QO to Q31.

. A 64-bit register named DO to D31.

. A 32-bit register named SO to S31.

. A 16-bit register named HO to H31.

. An 8-bit register named BO to B31.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B1-59
Non-Confidential - Beta

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

. A 128-bit vector of elements.
. A 64-bit vector of elements.

Where the number of bits described by a register name does not occupy an entire SIMD and
floating-point register, it refers to the least significant bits. See Figure B1-2.

127 64 63 32 31 1615 8 7 O
Vn
<«Bn—>
<+—Hn——
< Sn »
< Dn »
< Qn »

Figure B1-2 SIMD and floating-point register naming

For more information about data types and vector formats, see Supported data types on page Al1-36.
FPCR, FPSR Two SIMD and floating-point control and status registers, FPCR and FPSR.

See Registers for instruction processing and exception handling on page D1-1499 for more information on the
registers.

Pseudocode description of registers in AArch64 state

In the pseudocode functions that access registers:
. The assignment form is used for register writes.
. The non-assignment for register reads.

The uses of the X[] function are:
. Reading or writing X0-X30, using n to index the required register.
. Reading the zero register ZR, accessed as X[31].

Note

The pseudocode use of X[31] to represent the zero register does not indicate that hardware must implement this
register.

// X[1 - assignment form

//

// Write to general-purpose register from either a 32-bit or a 64-bit value.

X[integer n] = bits(width) value
assert n >= 0 & n <= 31;
assert width IN {32,64};
if n 1= 31 then

_R[n] = ZeroExtend(value);
return;

// X[1 - non-assignment form

/!
// Read from general-purpose register with implicit slice of 8, 16, 32 or 64 bits.

bits(width) X[integer n]
assert n >= 0 & n <= 31;
assert width IN {8,16,32,64};
if n != 31 then
return _R[n]<width-1:0>;
else

B1-60

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

return Zeros(width);
The _R[] function provides a view of the physical array of the physical general-purpose registers.
array bits(64) _R[0..30];
The SP[] function is used to read or write the current SP. This function has prototypes:
SP[]1 = bits(width) value;
bits(width) SP[];
The PC[] function is used to read the PC. This function has prototype:
bits(64) PC[];
The _V[] function provides a view of the physical array of the physical SIMD and floating-point registers.
array bits(128) _V[0..31];
The v[] function is used to read or write VV0-V31, using n to index the required register.

// VI1 - assignment form
//
// Write to SIMD&FP register with implicit extension from
// 8, 16, 32, 64 or 128 bits.

V[integer n] = bits(width) value
assert n >= 0 & n <= 31;
assert width IN {8,16,32,64,128};
_V[n] = ZeroExtend(value);
return;

// VI] - non-assignment form
/!
// Read from SIMD&FP register with implicit slice of 8, 16
// 32, 64 or 128 bits.

bits(width) V[integer n]
assert n >= 0 & n <= 31;
assert width IN {8,16,32,64,128};
return _V[n]<width-1:0>;

The vpart[] function is used to read or write the lower or upper half of VV0-V31, using n to index the required
register, and part to indicate the required half.

// Vpart[] - non-assignment form
//
// Reads a 128-bit SIMD&FP register in up to two parts:
// part @ returns the bottom 8, 16, 32 or 64 bits of the register;
// part 1 returns only the top 64 bits of the register.

bits(width) Vpart[integer n, integer part]
assert n >= 0 & n <= 31;
assert part IN {0, 1};
if part == 0 then
assert width IN {8,16,32,64};
return _V[n]<width-1:0>;
else
assert width == 64;
return _V[n]<127:64>;

// Vpart[] - assignment form
//
// Write a 128-bit SIMD&FP register in up to two parts:

// part @ zero extends a 8, 16, 32, or 64-bit value to fill the whole register;
// part 1 inserts a 64-bit value into the top 64 bits of the register.

Vpart[integer n, integer part] = bits(width) value
assert n >= 0 & n <= 31;

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B1-61
Non-Confidential - Beta

B1 The AArch64 Application Level Programmers’ Model

B1.2 Registers in AArch64 Execution state

assert part IN {0, 1};

if part == 0 then

assert width IN {8,16,32,64};
_V[n] = ZeroExtend(value);

else

assert width == 64;
_V[n]<127:64> = value<63:0>;

B1.2.2 Process state, PSTATE
Process state or PSTATE is an abstraction of process state information. All of the instruction sets provide
instructions that operate on elements of PSTATE.
The following PSTATE information is accessible at ELO:
The condition flags
Flag-setting instructions set these. They are:
N Negative condition flag. If the result of the instruction is regarded as a two's
complement signed integer, the PE sets this to:
. 1 if the result is negative.
. 0 if the result is positive or zero.
z Zero condition flag. Set to:
. 1 if the result of the instruction is zero.
. 0 otherwise.
A result of zero often indicates an equal result from a comparison.
C Carry condition flag. Set to:
. 1 if the instruction results in a carry condition, for example an unsigned overflow
that is the result of an addition.
. 0 otherwise.
\Y Overflow condition flag. Set to:
. 1 if the instruction results in an overflow condition, for example a signed
overflow that is the result of an addition.
. 0 otherwise.
Conditional instructions test the N, Z, C and V condition flags, combining them with the condition
code for the instruction to determine whether the instruction must be executed. In this way,
execution of the instruction is conditional on the result of a previous operation. For more
information about conditional execution, see Condition flags and related instructions on
page C6-398.
The exception masking bits
D Debug exception mask bit. When ELO is enabled to modify the mask bits, this bit is
visible and can be modified. However, this bit is architecturally ignored at ELO.
A SError interrupt mask bit.
| IRQ interrupt mask bit.
F FI1Q interrupt mask bit.
For each bit, the values are:
0 Exception not masked
1 Exception masked
Access at ELO using AArch64 state depends on SCTLR_EL1.UMA. See Traps to EL1 of ELO
accesses to the PSTATE.{D, A, |, F} interrupt masks on page D1-1561.
See Process state, PSTATE on page D1-1506 for the system level view of PSTATE.
B1-62 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

Accessing PSTATE fields at ELO

At ELO using AArch64 state, PSTATE fields can be accessed using the Special-purpose registers. The
Special-purpose registers can be directly read using the MRS instruction and directly written using the MSR
(register) instructions. Table B1-1 shows the Special-purpose registers that access the PSTATE fields that hold
AArch64 state when the PE is at ELO using AArch64. All other PSTATE fields do not have direct read and write
access at ELO.

Table B1-1 Accessing PSTATE fields at ELO using MRS and MSR (register)

Special-purpose register PSTATE fields
NzCV N,z C VvV
DAIF DA LF

Software can also use the MSR (immediate) instruction to directly write to PSTATE.{D, A, |, F}. Table B1-2 shows
the MSR (immediate) operands that can directly write to PSTATE.{D, A, I, F} when the PE is at ELO using
AArch64 state.

Table B1-2 Accessing PSTATE{D, A, |, F} at ELO using MSR (immediate)

Operand PSTATE fields Notes
DAIFSet D,AILF Directly sets any of the PSTATE.{D,A, |, F} bitsto 1
DAIFCIr DA ILF Directly clears any of the PSTATE.{D, A, |, F} bitsto 0

However, access to the PSTATE.{D, A, I, F} fields at ELO using AArch64 state depends on SCTLR_EL1.UMA.
Traps to EL1 of ELO accesses to the PSTATE.{D, A, |, F} interrupt masks on page D1-1561.

Writes to the PSTATE fields have side-effects on various aspects of the PE operation. All of these side-effects, are
guaranteed:

. Not to be visible to earlier instructions in the execution stream.

. To be visible to later instructions in the execution stream.

B1.2.3 System registers

System registers provide support for execution control, status and general system configuration. The majority of the
System registers are not accessible at ELO.

However, some system registers can be configured to allow access from software executing at EL0. Any access
from ELO to a system register with the access right disabled causes the instruction to behave as an UNDEFINED
instruction. The registers that can be accessed from ELO are:

Cache ID registers The CTR_ELO and DCZID_ELO registers provide implementation parameters for ELO
cache management support.

Debug registers A debug communications channel is supported by the MDCCSR_ELO, DBGDTR_ELO,
DBGDTRRX_ELO and DBGDTRTX_ELO registers.

Performance Monitors registers
See Performance Monitors support on page B1-64.

Thread ID registers The TPIDR_ELO and TPIDRRO_ELDO registers are two thread 1D registers with different
access rights.

Timer registers In ARMv8 the following operations are performed:
. Read access to the system counter clock frequency using CNTFRQ_ELDO.
. Physical and virtual timer count registers, CNTPCT_ELO and CNTVCT_ELDO.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B1-63
Non-Confidential - Beta

B1 The AArch64 Application Level Programmers’ Model
B1.2 Registers in AArch64 Execution state

. Physical up-count comparison, down-count value and timer control registers,
CNTP_CVAL_ELO, CNTP_TVAL_ELO, and CNTP_CTL_ELDO.
. Virtual up-count comparison, down-count value and timer control registers,

CNTV_CVAL_ELO, CNTV_TVAL_ELO, and CNTV_CTL_ELO.

Performance Monitors support

The ARMVS architecture defines optional Performance Monitors.
The basic form of the Performance Monitors is:

. A 64-bit cycle counter.

. Up to a maximum of 32 IMPLEMENTATION DEFINED event counters, where the number is identified by the
PMCR_ELDO.N field.

. System register access to the cycle counter and event registers, and related controls for:
— Enabling and resetting counters.
— Flagging overflows.
— Generating interrupts on overflow.

Software can enable the cycle counter independently of the event counters.

Software executing at EL1 or a higher Exception level, for example an operating system, can enable access to the
counters from ELO. This allows an application to monitor its own performance with fine grain control without
requiring operating system support. For example, an application might implement per-function performance
monitoring.

For details on the features, configuration and control of the Performance Monitors, see Chapter D5 The
Performance Monitors Extension.

ELO access to Performance Monitors

To allow application code to make use of the Performance Monitors, software executing at a higher Exception level
must set the following bits in the PMUSERENR_ELO system register:

EN When set to 1, access to all Performance Monitors registers is allowed at ELO, except for writes to
PMUSERENR_ELDO, and reads/writes of PMINTENSET_EL1 and PMINTENCLR_EL1.

ER When set to 1, read access to event counters is allowed at ELO. This includes read/write access to
PMSELR_ELDO, so that the event counter to read through PMXEVCNTR_ELDO can be set.

CR When set to 1, read access to PMCCNTR_ELDO is allowed at ELO.

SW When set to 1, write access to PMSWINC_ELO is allowed at ELO.

Note
Register PMUSERENR_ELO is always read-only at ELO.

B1-64

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B1 The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

B1.3 Software control features and ELO

The following sections describe the ELO view of the ARMv8 software control features:
. Exception handling

. Wait for Interrupt and Wait for Event

. The YIELD instruction

. Application level cache management

. Debug events on page B1-66

B1.3.1 Exception handling

In the ARM architecture, an exception causes a change of program flow. Execution of an exception handler starts,
at an Exception level higher than ELO, from a defined vector that relates to the exception taken.

Exceptions include:

. Interrupts.

. Memory system aborts.

. Undefined instructions.

. System calls.

. Secure monitor or Hypervisor traps.

Most details of exception handling are not visible to application level software, and are described in Chapter D1 The
AArch64 System Level Programmers’ Model.

The SVC instruction causes a Supervisor Call exception. This provides a mechanism for unprivileged software to
make a system call to an operating system.

B1.3.2 Wait for Interrupt and Wait for Event

Issuing a WFT instruction indicates that no further execution is required until a WFI wake-up event occurs, see Wait
For Interrupt on page D1-1600. This permits entry to a low-power state.

Issuing a WFE instruction indicates that no further execution is required until a WFE wake-up event occurs, see Wait
for Event mechanism and Send event on page D1-1597. This permits entry to a low-power state.

B1.3.3 The YIELD instruction

The YIELD instruction provides a hint that the task performed by a thread is of low importance so that it could yield,
see YIELD on page C6-804. This mechanism can be used to improve overall performance in an Symmetric
Multi-Threading (SMT) or Symmetric Multi-Processing (SMP) system.

Examples of when the YIELD instruction might be used include a thread that is sitting in a spin-lock, or where the
arbitration priority of the snoop but in an SMP system is modified. The YIELD instruction permits binary
compatibility between SMT and SMP systems.

The YIELD instruction is a NOP (No Operation) hint instruction.

The YIELD instruction has no effect in a single-threaded system, but developers of such systems can use the
instruction to flag its intended use for future migration to a multiprocessor or multithreading system. Operating
systems can use YIELD in places where a yield hint is wanted, knowing that it will be treated as a NOP if there is no
implementation benefit.

B1.3.4 Application level cache management

A small number of cache management instructions can be enabled at ELO from higher levels of privilege using the
SCTLR_EL1 system register. Any access from ELO to an operation with the access right disabled causes the
instruction to behave as an UNDEFINED instruction.

About the available operations, see Application level cache instructions on page B2-72.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B1-65
Non-Confidential - Beta

B1 The AArch64 Application Level Programmers’ Model
B1.3 Software control features and ELO

B1.3.5 Debug events

The debug logic is responsible for generating debug events. Most aspects of debug events are not visible to
application level software, and are described in Chapter H1 Introduction to External Debug. Aspects that are visible
to application level software include:

o The BKPT instruction, which causes a BKPT instruction debug event to occur.
. The DBG instruction, which provides a hint to the debug system.
. The HLT instruction, which causes entry to Debug state.
B1-66 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

Chapter B2
The AArch64 Application Level Memory Model

This chapter gives an application level view of the memory model. It contains the following sections:

.

Address space on page B2-68.

Memory type overview on page B2-69.

Caches and memory hierarchy on page B2-70.
Alignment support on page B2-75.

Endian support on page B2-76.

Atomicity in the ARM architecture on page B2-79.
Memory ordering on page B2-82.

Memory types and attributes on page B2-91.
Mismatched memory attributes on page B2-100.
Synchronization and semaphores on page B2-103.

Note

In this chapter, system register names usually link to the description of the register in Chapter D7 AArch64 System
Register Descriptions, for example SCTLR_EL1.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

B2-67

B2 The AArch64 Application Level Memory Model

B2.1 Address space

B2.1

Address space

Address calculations are performed using 64-bit registers. However, supervisory software can configure the top
eight address bits for use as a tag, as described in Address tagging in AArch64 state on page D4-1726. If this is done,
address bits[63:56]:

. Are not considered when determining whether the address is valid.

. Are never propagated to the program counter.

Supervisory software determines the valid address range. Attempting to access an address that is not valid generates
an MMU fault.

Address calculations are performed modulo 264,

The result of an address calculation is UNKNOWN if it overflows or underflows:
. The 64-bit address range A[63:0], where tagged addressing is not used.
. The 56-bit address range A[55:0], where tagged addressing is used.

Memory accesses use the Mem[] function.

The Mem[] function makes an access of the required type. If supervisory software configures the top eight address
bits for use as a tag, the top eight address bits are ignored.

bits(sizex8) Mem[bits(64) address, integer size, AccType acctype]
assert size IN {1, 2, 4, 8, 16};

Mem[bits(64) address, integer size, AccType acctype] = bits(size=8) value;
The AccType enumeration defines the different access types:

enumeration AccType {AccType_NORMAL, AccType_VEC, // Normal Toads and stores
AccType_STREAM, AccType_VECSTREAM, // Streaming loads and stores
AccType_ATOMIC, // Atomic loads and stores
AccType_ORDERED, // Load-Acquire and Store-Release
AccType_UNPRIV, // Load and store unprivileged
AccType_IFETCH, // Instruction fetch
AccType_PTW, // Page table walk
// Other operations
AccType_DC, // Data cache maintenance
AccType_IC, // Instruction cache maintenance
AccType_AT}; // Address translation

Note

. Chapter D3 The AArch64 System Level Memory Model and Chapter D4 The AArch64 Virtual Memory System
Architecture include descriptions of memory system features that are transparent to the application, including
memory access, address translation, memory maintenance instructions, and alignment checking and the
associated fault handling. These chapters also include pseudocode descriptions of these operations.

. For information on the pseudocode that relates to memory accesses, see Basic memory access on
page D3-1715, Unaligned memory access on page D3-1716, and Aligned memory access on page D3-1715.

B2-68

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.2 Memory type overview

B2.2 Memory type overview

ARMV8 provides the following mutually-exclusive memory types:

Normal This is generally used for bulk memory operations, both read-write and read-only operations.

Device The ARM architecture forbids speculative reads of any type of Device memory. This means Device
memory types are suitable attributes for read-sensitive locations.

Locations of the memory map that are assigned to peripherals are usually assigned the Device
memory attribute.

Device memory has additional attributes that have the following effects:

. They prevent aggregation of reads and writes, maintaining the number and size of the
specified memory accesses. See Gathering on page B2-96.

. They preserve the access order and synchronization requirements, both for accesses to a
single peripheral and where there is a synchronization requirement on the observability of
one or more memory write and read accesses. See Reordering on page B2-97

. They indicate whether a write can be acknowledged other than at the end point. See Early
Write Acknowledgement on page B2-97.

For more information on Normal memory and Device memaory, see Memory types and attributes on page B2-91.

Note

Earlier versions of the ARM architecture defined a single Device memory type and a Strongly-Ordered memory
type. A Note in Device memory on page B2-93 describes how these memory types map onto the ARMv8 memory
types.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-69
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

B2.3 Caches and memory hierarchy

The implementation of a memory system depends heavily on the microarchitecture and therefore many details of
the memory system are IMPLEMENTATION DEFINED. ARMV8 defines the application level interface to the memory
system, including a hierarchical memory system with multiple levels of cache. This section describes an application
level view of this system. It contains the subsections:

. Introduction to caches.

. Memory hierarchy.

. Application level cache instructions on page B2-72

. Implication of caches for the application programmer on page B2-72.

. Preloading caches on page B2-74.

B2.3.1 Introduction to caches

A cache is a block of high-speed memory that contains a number of entries, each consisting of:
. Main memory address information, commonly known as a tag.
. The associated data.

Caches increase the average speed of a memory access. Caching takes account of two principles of locality:

Spatial locality
An access to one location is likely to be followed by accesses to adjacent locations. Examples of this

principle are:
. Sequential instruction execution.
. Accessing a data structure.

Temporal locality

An access to an area of memory is likely to be repeated in a short time period. An example of this
principle is the execution of a software loop.

To minimize the quantity of control information stored, the spatial locality property groups several locations
together under the same tag. This logical block is commonly known as a cache line. When data is loaded into a
cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An access
to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the PE accesses a
cacheable memory location, the cache is checked. If the access is a cache hit, the access occurs in the cache.
Otherwise, the access is made to memory. Typically, when making this access, a cache location is allocated and the
cache line loaded from memory. ARMv8 permits different cache topologies and access policies, provided they
comply with the memory coherency model described in this manual.

Caches introduce a number of potential problems, mainly because:

. Memory accesses can occur at times other than when the programmer would expect them.
. A data item can be held in multiple physical locations.
B2.3.2 Memory hierarchy

Typically memory close to a PE has very low latency, but is limited in size and expensive to implement. Further
from the PE it is common to implement larger blocks of memory but these have increased latency. To optimize
overall performance, an ARMv8 memory system can include multiple levels of cache in a hierarchical memory
system that exploits this trade-off between size and latency. Figure B2-1 on page B2-71 shows an example of such
a system in an ARMv8-A system that supports virtual addressing.

B2-70 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

Processing
Element
Addregs Physical address:
translation
Virtual
address
System configuration
and control
PE l Y Y Y
’ ,| Level1 Level 2 Level 3

AArch64 state Cache Cache

X30 Instruction | . DRAM

fetch -
NR 4 SRAM
= = Level 4
Flash for example
X0 «—Data—» «—> |« > «—> |« » ROM ple,
memory card,
disk
Figure B2-1 Multiple levels of cache in a memory hierarchy
Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the Processing Element, as
shown in Figure B2-1.

Instructions and data can be held in separate caches or in a unified cache. A cache hierarchy can have one or more
levels of separate instruction and data caches, with one or more unified caches located at the levels closest to the
main memory. Memory coherency for cache topologies can be defined by two conceptual points:

Point of Unification (PoU)

The point at which the instruction cache, data cache, and translation table walks of a particular PE
are guaranteed to see the same copy of a memory location. In many cases, the point of unification
is the point in a uniprocessor memory system by which the instruction and data caches and the
translation table walks have merged. The point of unification might coincide with the point of
coherency.

Point of Coherency (PoC)

The point at which all agents that can access memory are guaranteed to see the same copy of a
memory location. In many cases this is effectively the main system memory, although the
architecture does not prohibit the implementation of caches beyond the PoC that have no effect on
the coherency between memory system agents.

—— Note
The presence of system caches can affect the definition of point of coherency as described in System
level caches on page D3-1710.

See also Overview of the cache maintenance instructions on page D3-1697.

The cacheability and shareability memory attributes
Cacheability and shareability are two attributes that describe the memory hierarchy in a multiprocessing system:

Cacheability This attribute defines whether memory locations are allowed to be allocated into a cache or not.
Cacheability is defined independently for Inner and Outer cacheability locations.

Shareability This attribute defines whether memory locations are shareable between different agents in a system.
Marking a memory location as shareable for a particular domain requires hardware to ensure that
the location is coherent for all agents in that domain. Shareability is defined independently for Inner
and Outer shareability domains.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-71
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

For more information about cacheability and shareability see Memory types and attributes on page B2-91.

B2.3.3 Application level cache instructions

In the ARM architecture, the application level is defined as Exception level 0 (ELO). The architecture defines a set

of cache maintenance instructions that software can use to manage cache coherency. Software executing at a higher

Exception level can enable ELO access to the following:

. The data cache maintenance instructions, DC CVAU, DC CVAC, and DC CIVAC. See Data cache maintenance
instructions (DC*) on page D3-1702.

. The instruction cache maintenance instruction, IC IVAU. See Instruction cache maintenance instructions
(IC*) on page D3-1701.

. The cache type register. See CTR_ELO.

. The data cache zero instruction, DC ZVA. See Data cache zero instruction on page D3-1708.

These instructions are UNDEFINED from ELO unless software executing at a higher Exception level has enabled

them. See Cache maintenance instructions on page D3-1701.

For all of these instructions, if the addresses do not have read access permission at ELO, executing these instructions

at ELO generates a Permission fault.

For more information about the system controls, see Cache support on page D3-1691.

B2.3.4 Implication of caches for the application programmer

In normal operation, the caches are largely invisible to the application programmer. However they can become

visible when there is a breakdown in the coherency of the caches. Such a breakdown can occur:

. When memory locations are updated by other agents in the system that do not use hardware management of
coherency.

. When memory updates made from the application software must be made visible to other agents in the
system, without the use of hardware management of coherency.

For example:

. In the absence of hardware management of coherency of DMA accesses, in a system with a DMA controller
that reads memory locations that are held in the data cache of a PE, a breakdown of coherency occurs when
the PE has written new data in the data cache, but the DMA controller reads the old data held in memory.

. In a Harvard cache implementation, where there are separate instruction and data caches, a breakdown of
coherency occurs when new instruction data has been written into the data cache, but the instruction cache
still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

. By not using the caches in situations where coherency issues can arise. This can be achieved by:

— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.
— Not enabling caches in the system.

. By using cache maintenance instructions to manage the coherency issues in software. See Application level
cache instructions.

. By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable
locations by observers within the different shareability domains, see Non-shareable Normal memory on
page B2-93 and Shareable, Inner Shareable, and Outer Shareable Normal memory on page B2-92.

B2-72 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

Note
The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

Note

Not all these mechanisms are directly available to software operating at ELO and might involve interaction with
software operating at a higher Exception level.

Synchronization and coherency issues between data and instruction accesses

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

. The PE might have fetched the instructions from memory at any time since the last Context synchronization
operation on that PE.

. Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being re-fetched from memory. In the absence of an ISB, there is no limit on the number
of times such an instruction might be executed without being re-fetched from memory.

The ARM architecture does not require the hardware to ensure coherency between instruction caches and memory,
even for locations of shared memory.

If software requires coherency between instruction execution and memory, it must manage this coherency using the
ISB and DSB memory barriers and cache maintenance instructions. The following code sequence can be used to allow
a PE to execute code that the same PE has written.

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a Tocation pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH ; Ensure completion of the invalidations
ISB ; Synchronize the fetched instruction stream
Note
. For Non-cacheable or Write-Through accesses, the clean data cache by VA instruction is not required.

However, the invalidate instruction cache instruction is required because the ARMv8-A AArch64
architecture allows Non-cacheable accesses to held in an instruction cache. See Non-cacheable accesses and
instruction caches on page D3-1696.

. This code can be used when the thread of execution modifying the code is the same thread of execution that
is executing the code. The ARMvV8 architecture limits the set of instructions that can be executed by one
thread of execution as they are being modified by another thread of execution without requiring explicit
synchronization. See Concurrent modification and execution of instructions on page B2-81.

. The system software controls whether these cache maintenance instructions are available to the application
level by setting SCTLR_EL1.UCI.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-73
ID121714 Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.3 Caches and memory hierarchy

B2.3.5

Preloading caches

The ARM architecture provides memory system hints PRFM, LDNP, and STNP that software can use to communicate
the expected use of memory locations to the hardware. The memory system can respond by taking actions that are
expected to speed up the memory accesses if they occur. The effect of these memory system hints is
IMPLEMENTATION DEFINED. Typically, implementations use this information to bring the data or instruction
locations into caches.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions cannot generate synchronous Data Abort exceptions, but the resulting
memory system operations might, under exceptional circumstances, generate an asynchronous external abort, which
is taken using an SError interrupt exception. For more information, see Exception from a Data abort on

page D1-1530.

PrefetchHint{} defines the prefetch hint types:
enumeration PrefetchHint {Prefetch_READ, Prefetch_WRITE, Prefetch_EXEC};

The Hint_Prefetch() function signals to the memory system that memory accesses of the type hint to or from the
specified address are likely to occur in the near future. The memory system might take some action to speed-up the
memory accesses when they do occur, such as preloading the specified address into one or more caches as indicated
by the innermost cache level target and non-temporal hint stream.

Hint_Prefetch(bits(64) address, PrefetchHint hint, integer target, boolean stream);

For more information on PRFM and Load/Store instructions that provide hints to the memory system, see Prefetch
memory on page C3-145 and Load/Store SIMD and Floating-point Non-temporal pair on page C3-143.

B2-74

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.4 Alignment support

B2.4 Alignment support

This section describes alignment support. It contains the following subsections:

.

.

Instruction alignment.
Alignment of data accesses.
Unaligned data access restrictions.

B2.4.1 Instruction alignment

A64 instructions must be word-aligned.

Attempting to fetch an instruction from a misaligned location results in a Misaligned PC fault. See PC alignment
checking on page D1-15009.

B2.4.2 Alignment of data accesses

An unaligned access to any type of Device memory causes an Alignment fault.

The alignment requirements for accesses to Normal memory are as follows:

For all instructions that load or store a single or multiple registers, other than
Load-Exclusive/Store-Exclusive and Load-Acquire/Store-Release, if the address that is accessed is not
aligned to the size of the data element being accessed, then one of the following occurs:

— An Alignment fault is generated.

— Anunaligned access is performed.

SCTLR_ELX.A at the current Exception level can be configured to enable an alignment check, and thereby
determine which of these two options is used.

Note

— The SCTLR_EL1.A bit that is applicable to software running at ELO, can only be accessed from EL1
or above.

— Alignment checks are based on element size, not overall access size. This affects SIMD element and
structure loads and stores, and also Load/Store pair instructions.

For all Load-Exclusive/Store-Exclusive and Load-Acquire/Store-Release memory accesses that access a
single element or a pair of elements, an Alignment fault is generated if the address being accessed is not
aligned to the size of the data structure being accessed.

A failed alignment check results in an Alignment fault, which is taken as a Data Abort exception. These exceptions
are taken to the lowest Exception level that can handle the exception, consistent with the basic requirement that the
Exception level never decreases on taking an exception. Therefore:

Alignment faults taken from ELO or EL1 are taken to EL1 unless redirected by HCR_EL2.TGE
Alignment faults taken from EL2 are taken to EL2.
Alignment faults taken from EL3 are taken to EL3.

B2.4.3 Unaligned data access restrictions

The following points apply to unaligned data accesses in ARMv8:

Accesses are not guaranteed to be single-copy atomic except at the byte access level, see Atomicity in the
ARM architecture on page B2-79.

Unaligned accesses typically takes a number of additional cycles to complete compared to a naturally-aligned
access.

An operation that performs an unaligned access can abort on any memory access that it makes, and can abort
on more than one access. This means that an unaligned access that occurs across a page boundary can
generate an abort on either side of the boundary.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-75
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model

B2.5 Endian support

Endian support

B2.5

General description of endianness in the ARM architecture describes the relationship between endianness and

memory addressing in the ARM architecture.

The following subsections then describe the endianness schemes supported by the architecture:

Instruction endianness on page B2-77.

Data endianness on page B2-77.

General description of endianness in the ARM architecture

B25.1

This section only describes memory addressing and the effects of endianness for data elements up to quadwords of

128 bits. However, this description can be extended to apply to larger data elements.

For an address A, Figure B2-2 shows, for big-endian and little-endian memory systems, the relationship between:

The quadword at address A.

The doubleword at address A and A+8.

The words at addresses A, A+4, A+8, and A+12.

The halfwords at addresses A, A+2, A+4, A+6, A+8, A+10, A+12, and A+14.

The bytes at addresses A, A+1, A+2, A+3, A+4, A+5, A+6, A+7, A+8, A+9, A+10, A+11, A+12, A+13,

A+14, and A+15.

The terms in Figure B2-2 have the following definitions:

B_A
HW_A

Byte at address A.

Halfword at address A.

Most-significant byte.
Least-significant byte.

MSByte

LSByte

Big-endian memory system

> | SByte

Incrementing byte address:

MSByte

Quadword at address A

Doubleword at address A+8

Word at address A+12

HW_A+14

HW_A+12

Word at address A+8

HW_A+10

HW_A+8

Doubleword at address A

Word at address A+4

HW_A+6

HW_A+4

Word at address A

HW_A+2

HW_A

Little-endian memory system

LSByte

Incrementing byte address:

MSByte <

Quadword at address A

Doubleword at address A

Word at address A

HW_A+2

Word at address A+4

HW_A+4

HW_A+6

Doubleword at address A+8

Word at address A+8

HW_A+8

HW_A+10

Word at address A+12

HW_A+12

B A+12IB A+11|B_A+10|B_A+9|B A+8|B A+7|B A+6|B A+5|B A+4|B A+3|B _A+2 (B A+1

HW_A+14

B_A+15B_A+14B_A+13

Figure B2-2 Endianness relationships

ARM DDI 0487A.e

Copyright © 2013, 2014 ARM Limited. All rights reserved.

B2-76

ID121714

Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.5 Endian support

The big-endian and little-endian mapping schemes determine the order in which the bytes of a quadword,
doubleword, word or halfword are interpreted. For example, a load of a word from address 0x1000 always results in
an access to the bytes at memory locations 0x1000, 0x1001, 0x1002, and 0x1003. The endianness mapping scheme
determines the significance of these four bytes.

B2.5.2 Instruction endianness

In ARMV8-A, A64 instructions have a fixed length of 32 bits and are always little-endian.

B2.5.3 Data endianness

SCTLR_EL1.EQE, configurable at EL1 or higher, determines the data endianness for execution at ELO.
The data size used for endianness conversions:

. Is the size of the data value that is loaded or stored for SIMD and floating-point register and general-purpose
register loads and stores.

. Is the size of the data element that is loaded or stored for SIMD element and data structure loads and stores.
For more information see Endianness in SIMD operations.

Instructions to reverse bytes in a general-purpose register or a SIMD and floating-point
register

An application or device driver might have to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as the internal data structures. Similarly, the endianness of the operating
system might not match that of the peripheral registers or shared memory. In these cases, the PE requires an efficient
method to transform explicitly the endianness of the data.

Table B2-1 shows the instructions that provide this functionality:

Table B2-1 Byte reversal instructions

Function Instructions Notes

Reverse bytes in 32-bit word or words?2 REV32 For use with general-purpose registers

Reverse bytes in whole register REV For use with general-purpose registers

Reverse bytes in 16-bit halfwords REV16 For use with general-purpose registers

Reverse elements in doublewords, vector REV64 For use with SIMD and floating-point registers
Reverse elements in words, vector REV32 For use with SIMD and floating-point registers
Reverse elements in halfwords, vector REV16 For use with SIMD and floating-point registers

a. Can operate on multiple words.

Endianness in SIMD operations

SIMD element Load/Store instructions transfer vectors of elements between memory and the SIMD and
floating-point register file. An instruction specifies both the length of the transfer and the size of the data elements
being transferred. This information is used to load and store data correctly in both big-endian and little-endian
systems.

For example:

LD1 {V@.4H}, [X1]

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-77
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model

B2.5 Endian support

This loads a 64-bit register with four 16-bit values. The four elements appear in the register in array order, with the
lowest indexed element fetched from the lowest address. The order of bytes in the elements depends on the

endianness configuration, as shown in Figure B2-3. Therefore, the order of the elements in the registers is the same
regardless of the endianness configuration.

64-bit register containing four 16-bit elements

D[15:8] D[7:0] C[15:8] C7:0] B[15:8] B[7:0] A[15:8] A[7:0]
()
A
ofaror |) (0 [A[15:8]

1 [A[15:8] 1 [A[7:0]

2 BI7:0] 2 [B[15:8]

3 [B[15:8] J 3 [B[7:0]

4 (C[7:0] LD1 {V0.4H}, [X1] LD1 {V0.4H}, [x1] | 4[C[15:8]

5 [C[15:8] 5 [C[7:0]

6 DI7:0] 6 D[15:8]

7 |D[15:8] 7 [D[7:0]

—
Memory system with
little-endian addressing (LE)

N—
Memory system with
big-endian addressing (BE)

Figure B2-3 SIMD byte order example

The BigEndian() function determines the current endianness of the data:

booTlean BigEndian();

The pseudocode function for BigEndianReverse() is as follows:

// BigEndianReverse()

bits(width) BigEndianReverse (bits(width) value)
assert width IN {8, 16, 32, 64, 128};
integer half = width DIV 2;
if width == 8 then return value;
return BigEndianReverse(value<half-1:0>) : BigEndianReverse(value<width-1:half>);

B2-78

Copyright © 2013, 2014 ARM Limited. All rights reserved.

Non-Confidential - Beta

ARM DDI 0487A.e

ID121714

B2 The AArch64 Application Level Memory Model
B2.6 Atomicity in the ARM architecture

B2.6 Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The ARM architecture description refers
to two types of atomicity, defined in:

.

Single-copy atomicity.
Multi-copy atomicity on page B2-80.

In the ARMVS architecture, the atomicity requirements for memory accesses depends on the memory type, and
whether the access is explicit or implicit. For more information, see:

.

.

Memory type overview on page B2-69.
Requirements for single-copy atomicity.
Requirements for multi-copy atomicity on page B2-80.

B2.6.1 Single-copy atomicity

A read or write operation is single-copy atomic only if it meets the following conditions:

1.

For a single-copy atomic store, if the store overlaps another single-copy atomic store, then all of the writes
from one of the stores are inserted into the Coherence order of each overlapping byte before any of the writes
of the other store are inserted into the Coherence orders of the overlapping bytes.

If a single-copy atomic load overlaps a single-copy atomic store and for any of the overlapping bytes the load
returns the data written by the write inserted into the Coherence order of that byte by the single-copy atomic
store then the load must return data from a point in the Coherence order no earlier than the writes inserted
into the Coherence order by the single-copy atomic store of all of the overlapping bytes.

B2.6.2 Requirements for single-copy atomicity

For explicit memory accesses generated from an Exception level the following rules apply:

All reads generated by load instructions that load a single general-purpose register and that are aligned to the
size of the read in that instruction are single-copy atomic.

All writes generated by store instructions that store a single general-purpose register and that are aligned to
the size of the write in that instruction are single-copy atomic.

Reads of general-purpose registers generated by Load Pair instructions that are aligned to the size of the load
to each register are treated as two single-copy atomic reads, one for each register being loaded.

Writes of general-purpose registers generated by Store pair instructions that are aligned to the size of the store
of each register are treated as two single-copy atomic writes, one for each register being stored.

Load-Exclusive Pair instructions of two 32-bit quantities and Store-Exclusive Pair instructions of 32-bit
quantities are single-copy atomic.

When the Store-Exclusive of a Load-Exclusive/Store-Exclusive pair instruction using two 64-bit quantities
succeeds, it causes a single-copy atomic update of the entire memory location being updated.

Note

To atomically load two 64-bit quantities, perform a Load-Exclusive pair/Store-Exclusive pair sequence of
reading and writing the same value for which the Store-Exclusive pair succeeds, and use the read values from
the Load-Exclusive pair.

Where translation table walks generate a read of a translation table entry, this read is single-copy atomic.

For the atomicity of instruction fetches, see Concurrent modification and execution of instructions on
page B2-81.

Reads to floating-point and SIMD registers of a single 64-bit or smaller quantity that is aligned to the size of
the quantity being loaded are treated as single-copy atomic reads.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-79
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.6 Atomicity in the ARM architecture

. Writes from floating-point and SIMD registers of a single 64-bit or smaller quantity that is aligned to the size
of the quantity being stored are treated as single-copy atomic writes.

. Element or Structure Reads to floating-point and SIMD registers of 64-bit or smaller elements, where each
element is aligned to the size of the element being loaded, have each element treated as a single-copy atomic
read.

. Element or Structure Writes from floating-point and SIMD registers of 64-bit or smaller elements, where

each element is aligned to the size of the element being stored, have each element treated as a single-copy
atomic store.

. Reads to floating-point and SIMD registers of a 128-bit value that is 64-bit aligned in memory are treated as
a pair of single-copy atomic 64-bit reads.

. Writes from floating-point and SIMD registers of a 128-bit value that is 64-bit aligned in memory are treated
as a pair of single-copy atomic 64-bit writes.

All other memory accesses are regarded as streams of accesses to bytes, and no atomicity between accesses to
different bytes is ensured by the architecture.

All accesses to any byte are single-copy atomic.

Note

In AArch64 state, no memory accesses from a DC ZVA have single-copy atomicity of any quantity greater than
individual bytes.

If, according to these rules, an instruction is executed as a sequence of accesses, exceptions, including interrupts,
can be taken during that sequence, regardless of the memory type being accessed. If any of these exceptions are
returned from using their preferred return address, the instruction that generated the sequence of accesses is
re-executed, and so any access performed before the exception was taken is repeated. See also Taking an interrupt
or other exception during a multiple-register load or store on page D1-1557.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes to
memory for the purpose of software synchronization.

B2.6.3 Multi-copy atomicity
In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:
. All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.
. A read of a location does not return the value of a write until all observers observe that write.
Note
Writes that are not coherent are not multi-copy atomic.
B2.6.4 Requirements for multi-copy atomicity
In a multiprocessing system, coherent writes to a memory location are multi-copy atomic if the read of a location
returns the value of a write only when all observers have observed that write.
For Normal memory, writes are not required to be multi-copy atomic.
For Device memory with the non-Gathering attribute, writes that are single-copy atomic are also multi-copy atomic.
For Device memory with the Gathering attribute, writes are not required to be multi-copy atomic.
B2-80 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.6 Atomicity in the ARM architecture

B2.6.5 Concurrent modification and execution of instructions

The ARMvVS architecture limits the set of instructions that can be executed by one thread of execution as they are
being modified by another thread of execution without requiring explicit synchronization.

Concurrent modification and execution of instructions can lead to the resulting instruction performing any behavior
that can be achieved by executing any sequence of instructions that can be executed from the same Exception level,
except where the instruction before modification and the instruction after modification is a B, BL, NOP, BRK, SVC, HVC,
or SMC instruction.

For the B, BL, NOP, BRK, SVC, HVC, and SMC instructions the architecture guarantees that, after modification of the
instruction, behavior is consistent with execution of either:

. The instruction originally fetched.
. A fetch of the modified instruction.

If one thread of execution changes a conditional branch instruction, such as B or BL, to another conditional instruction
and the change affects both the condition field and the branch target, execution of the changed instruction by another
thread of execution before the change is synchronized can lead to either:

. The old condition being associated with the new target address.
. The new condition being associated with the old target address.

These possibilities apply regardless of whether the condition, either before or after the change to the branch
instruction, is the always condition.

For all other instructions, to avoid UNPREDICTABLE behavior, instruction modifications must be explicitly
synchronized before they are executed. The required synchronization is as follows:

1. No PE must be executing an instruction when another PE is modifying that instruction.
2. To ensure that the modified instructions are observable, the PE that modified the instructions must issue the

following sequence of instructions and operations:

; Coherency example for data and instruction accesses within the same Inner Shareable domain.
; Enter this code with <Wt> containing a new 32-bit instruction,
; to be held in Cacheable space at a Tocation pointed to by Xn.

STR Wt, [Xn]
DC CVAU, Xn ; Clean data cache by VA to point of unification (PoU)
DSB ISH ; Ensure visibility of the data cleaned from cache
IC IVAU, Xn ; Invalidate instruction cache by VA to PoU
DSB ISH ; Ensure completion of the invalidations
Note
The DC CVAU operation is not required if the area of memory is either Non-cacheable or Write-through
Cacheable.
3. In a multiprocessor system, the IC IVAU is broadcast to all PEs within the Inner Shareable domain of the PE

running this sequence. However, once the modified instructions are observable, each PE that is executing the
modified instructions must issue the following instruction to ensure execution of the modified instructions:

ISB ; Synchronize fetched instruction stream

For more information about the required synchronization operation, see Synchronization and coherency issues
between data and instruction accesses on page B2-73.

Note
For information about memory accesses caused by instruction fetches, see Ordering requirements on page B2-83.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-81
ID121714 Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

B2.7 Memory ordering

This section describes observation ordering. It contains the following subsections:

. Observability and completion.

. Ordering requirements on page B2-83.

. Memory barriers on page B2-85.

. Summary of the memory ordering rules on page B2-89.

For information on endpoint ordering of memory accesses, see Reordering on page B2-97.

In the ARMv8 memory model, the shareability memory attribute indicates whether hardware must ensure memory
coherency.

The ARMv8 memory system architecture defines additional attributes and associated behaviors, defined in the
system level section of this manual. See:

. Chapter D3 The AArch64 System Level Memory Model.
. Chapter D4 The AArch64 Virtual Memory System Architecture.

See also Mismatched memory attributes on page B2-100.

B2.7.1 Observability and completion

An observer is a master in the system that is capable of observing memory accesses. For a PE, the following
mechanisms must be treated as independent observers:

. The mechanism that performs reads or writes to memory.

. A mechanism that causes an instruction cache to be filled from memory or that fetches instructions to be
executed directly from memory. These are treated as reads.

. A mechanism that performs translation table walks. These are treated as reads.
The set of observers that can observe a memory access is defined by the system.

In the definitions in this subsection, subsequent means whichever of the following is appropriate to the context:
. After the point in time where the location is observed by that observer.
. After the point in time where the location is globally observed.

For all memory:

. A write to a location in memory is said to be observed by an observer when:

— Asubsequent read of the location by the same observer returns the value written by the observed write,
or written by a write to that location by any observer that is sequenced in the Coherence order of the
location after the observed write.

— Assubsequent write of the location by the same observer is sequenced in the Coherence order of the
location after the observed write.

. A write to a location in memory is said to be globally observed for a shareability domain or set of observers
when:

— Asubsequent read of the location by any observer in that shareability domain returns the value written
by the globally observed write, or written by a write to that location by any observer that is sequenced
in the Coherence order of the location after the globally observed write.

— Assubsequent write of the location by any observer in that shareability domain is sequenced in the
Coherence order of the location after the globally observed write.

. A read of a location in memory is said to be observed by an observer when a subsequent write to the location
by the same observer has no effect on the value returned by the read.

. A read of a location in memory is said to be globally observed for a shareability domain when a subsequent
write to the location by any observer in that shareability domain has no effect on the value returned by the
read.

B2-82 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

Additionally, for Device-nGhnRnE memory:
. A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be observed,
and globally observed, only when the read or write:
— Meets the general conditions listed.
— Can begin to affect the state of the memory-mapped peripheral.
— Cantrigger all associated side-effects, whether they affect other peripheral devices, PEs, or memory.

Note
This definition is consistent with the memory access having reached the peripheral.

For all memory, the completion rules are defined as:

. A read or write is complete for a shareability domain when all of the following are true:
— The read or write is globally observed for that shareability domain.
— Anytranslation table walks associated with the read or write are complete for that shareability domain.

. A translation table walk is complete for a shareability domain when the memaory accesses associated with the
translation table walk are globally observed for that shareability domain, and the TLB is updated.

. A cache or TLB maintenance instruction is complete for a shareability domain when the effects of the
instruction are globally observed for that shareability domain, and any translation table walks that arise from
the instruction are complete for that shareability domain.

The completion of any cache or TLB maintenance instruction includes its completion on all PEs that are
affected by both the instruction and the DSB operation that is required to guarantee visibility of the
maintenance instruction.

Completion of side-effects of accesses to Device memory

The completion of a memory access to Device memory other than Device-nGnRnE is not guaranteed to be sufficient
to determine that the side-effects of the memory access are visible to all observers. The mechanism that ensures the
visibility of side-effects of a memory access is IMPLEMENTATION DEFINED.

B2.7.2 Ordering requirements

ARMV8 defines restrictions for the permitted ordering of memory accesses. These restrictions depend on the
memory locations that are being accessed. See Memory types and attributes on page B2-91.

The following additional restrictions apply to the order in which accesses to Normal memory are observed:

. Reads and writes can be observed in any order provided the following constraints are met:

— Ifan address dependency exists between two reads or between a read and a write, then those memory
accesses are observed in program order by all observers within the shareability domain of the memory
address being accessed.

The ARMV8 architecture relaxes this rule for execution where the second read is generated by a Load
Non-Temporal Pair instruction. See Load/Store Non-temporal Pair on page C3-139 and Load/Store
SIMD and Floating-point Non-temporal pair on page C3-143.

— Writes that would not occur in a simple sequential execution of the program cannot be observed by
other observers. This implies that where a control, address or data dependency exists between a read
and a write, those memory accesses are observed in program order by all observers within the
shareability domain of the memory addresses being accessed.

— Ordering can be achieved by using a DMB or DSB barrier. For more information on DMB and DSB
instructions, see Memory barriers on page B2-85.

. Reads and writes to the same location are coherent within the shareability domain of the memory address
being accessed.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-83
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model

B2.7 Memory ordering

. Two reads of the same location by the same observer are observed in program order by all observers within
the shareability domain of the memory address being accessed.

. Writes are not required to be multi-copy atomic. This means that in the absence of barriers, the observation
of a store by one observer does not imply the observation of the store by another observer.

. Instructions that access multiple elements have no defined ordering requirements for the memory accesses
relative to each other.

Memory accesses caused by instruction fetches are not required to be observed in program order, unless they are
separated by an ISB or other context synchronization event.

Address dependencies and order

In the ARMV8 architecture, a register data dependency creates order between a load instruction and a subsequent
memory transaction, that is between the data value returned from the load and the address used by the subsequent
memory transaction.

A register data dependency exists between a first data value and a second data value exists when either:

. The register, excluding the zero register (XZR or WZR), used to hold the first data value is used in the
calculation of the second data value, and the calculation between the first data value and the second data value
does not consist of either:

— Aconditional branch whose condition is determined by the first data value.

— Aconditional selection, move, or computation whose condition is determined by the first data value,
where the input data values for the selection, move, or computation do not have a data dependency on
the first data value.

. There is a register data dependency between the first data value and a third data value, and between the third
data value and the second data value.

Note

A register data dependency can exist even if the value of the first data value is discarded as part of the calculation,
as might be the case if it is ANDed with 0xe or if arithmetic using the first data value cancels out its contribution.

For example, each of the following code sequences creates order between the memory transactions:

Sequencel LDR X1, [X2]
AND X1, X1, XZR
LDR X4, [X3, X1]

Sequence 2 LDR X1, [X2]
ADD X3, X3, X1
SUB X3, X3, X1
STR X4, [X3]

Address dependencies of Load Non-temporal Pair instructions

Where an address dependency exists between two reads, and the second read was generated by a Load
Non-temporal Pair instruction, then in the absence of any other barrier mechanism to achieve order, those memory
accesses can be observed in any order by other observers within the shareability domain of the memory addresses
being accessed.

This affects the following instruction:

. LDNP on page C6-523.

B2-84

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

B2.7.3 Memory barriers

The ARM architecture is a weakly ordered memory architecture that supports out of order completion. Memory
barrier is the general term applied to an instruction, or sequence of instructions, that forces synchronization events
by a PE with respect to retiring Load/Store instructions. The memory barriers defined by the ARMv8 architecture
provide a range of functionality, including:

. Ordering of Load/Store instructions.
. Completion of Load/Store instructions.
. Context synchronization.

The following subsections describe the ARMv8 memory barrier instructions:

. Instruction Synchronization Barrier (1SB)

. Data Memory Barrier (DMB).

. Data Synchronization Barrier (DSB) on page B2-86.

. Shareability and access limitations on the data barrier operations on page B2-87.
. Load-Acquire, Store-Release on page B2-88.

Note
Depending on the required synchronization, a program might use memory barriers on their own, or it might use them
in conjunction with cache maintenance and memory management instructions that in general are only available
when software execution is at EL1 or higher.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by Load/Store instructions
and data or unified cache maintenance instructions being executed by the PE. Instruction fetches or accesses caused
by a hardware translation table access are not explicit accesses.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the PE, so that all instructions that come after the ISB instruction in
program order are fetched from the cache or memory only after the ISB instruction has completed. Using an ISB
ensures that the effects of context-changing operations executed before the ISB are visible to the instructions fetched
after the ISB instruction. Examples of context-changing operations that require the insertion of an ISB instruction to
ensure the effects of the operation are visible to instructions fetched after the ISB instruction are:

. Completed cache and TLB maintenance instructions.
. Changes to system control registers.

Any context-changing operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

InstructionSynchronizationBarrier();

See also Memory barriers on page D3-1722.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The PE that executes the DMB instruction is referred to as the executing
PE, PEe. The DMB instruction takes the required shareability domain and required access types as arguments:

DataMemoryBarrier(MBRegDomain domain, MBReqTypes types);

See Shareability and access limitations on the data barrier operations on page B2-87.

If the required shareability is Full system then the operation applies to all observers within the system.
A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. All explicit memory accesses of the required access types from observers in the same
required shareability domain as PEe that are observed by PEe before the DMB instruction.
These accesses include any accesses of the required access types performed by PEe.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-85
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model

B2.7 Memory ordering

. All loads of required access types from an observer PEx in the same required shareability
domain as PEe that have been observed by any given different observer, PEy, in the same
required shareability domain as PEe before PEy has performed a memory access that is a
member of Group A.

Group B Contains:

. All explicit memory accesses of the required access types by PEe that occur in program order
after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer PEX in the
same required shareability domain as PEe that can only occur after a load by PEX has returned
the result of a store that is a member of Group B.

Any observer with the same required shareability domain as PEe observes all members of Group A before it
observes any member of Group B to the extent that those group members are required to be observed, as determined
by the shareability and cacheability of the memory locations accessed by the group members.

If members of Group A and members of Group B access the same memory-mapped peripheral of arbitrary
system-defined size, then members of Group A that are accessing Device or Normal Non-cacheable memory arrive
at that peripheral before members of Group B that are accessing Device or Normal Non-cacheable memory. Where
the members of Group A and Group B that must be ordered are from the same PE, a DMB NSH is sufficient for this
guarantee.

Note

. A memory access might be in neither Group A nor Group B. The DMB does not affect the order of observation
of such a memory access.

. The second part of the definition of Group A is recursive. Ultimately, membership of Group A derives from
the observation by PEy of a load before PEy performs an access that is a member of Group A as a result of
the first part of the definition of Group A.

. The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives from
the observation by any observer of an access by PEe that is a member of Group B as a result of the first part
of the definition of Group B.

DMB only affects memory accesses and the operation of data cache and unified cache maintenance instructions, see
Cache maintenance instructions on page D3-1701. It has no effect on the ordering of any other instructions
executing on the PE. A DMB instruction intended to ensure the completion of cache maintenance operations must have
an access type of both loads and stores.

See also Memory barriers on page D3-1722.

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory accesses.
The DSB instruction takes the required shareability domain and required access types as arguments:
DataSynchronizationBarrier(MBRegDomain domain, MBReqTypes types);

See Shareability and access limitations on the data barrier operations on page B2-87.

If the required shareability is Full system then the operation applies to all observers within the system.

A DSB behaves as a DMB with the same arguments, and also has the additional properties defined in this section. The
PE that executes the DSB instruction is referred to as the executing PE, PEe

A DSB completes when all of the following apply:

. All explicit memory accesses that are observed by PEe before the DSB is executed and are of the required
access types, and are from observers in the same required shareability domain as PEe, are complete for the
set of observers in the required shareability domain.

B2-86

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

. If the required accesses types of the DSB is reads and writes, all cache maintenance instructions issued by
PEe before the DSB are complete for the required shareability domain.

. If the required access types of the DSB is reads and writes, all TLB maintenance instructions issued by PEe
before the DSB are complete for the required shareability domain.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB completes.

A DSB intended to ensure the completion of cache maintenance operations must have an access type of both loads
and stores.

See also Memory barriers on page D3-1722.

Shareability and access limitations on the data barrier operations

The DMB and DSB instructions can each take an optional limitation argument that specifies:
. The shareability domain over which the instruction must operate. This is one of:
— Full system.
— Outer Shareable.
— Inner Shareable.
— Non-shareable.
. The accesses for which the instruction operates. This is one of:
— Read and write accesses in Group A and Group B.
— Write accesses only in Group A and Group B.
— Read access only in Group A and read and write accesses in Group B.

Note
This is occasionally referred to as a Load-Load/Store barrier.

If no specifiers are used then each instruction operates for read and write accesses, over the full system. See the
instruction descriptions for more information about these arguments.

Note

ISB also supports an optional limitation argument that can only contain one value that corresponds to full system
operation.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-87
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model

B2.7 Memory ordering

Load-Acquire, Store-Release

ARMV8 provides a set of instructions with Acquire semantics for loads, and Release semantics for stores. See
Load-Acquire/Store-Release on page C3-141.

For all memory types, these instructions have the following ordering requirements:

A Store-Release followed by a Load-Acquire is observed in program order by any observers that are in both:
— The shareability domain of the address accessed by the Store-Release.
— The shareability domain of the address accessed by the Load-Acquire.

For a Load-Acquire, observers in the shareability domain of the address accessed by the Load-Acquire
observe:
1. The read caused by the Load-Acquire.

2. Reads and writes caused by loads and stores that appear in program order after the Load-Acquire, if
the shareability of the addresses accessed by these loads and stores requires that the observer observes
them.

There are no additional ordering requirements on loads or stores that appear before the Load-Acquire.
For a Store-Release, observers in the shareability domain of the address accessed by the Store-Release
observe:

1. Both of the following, if the shareability of the addresses accessed requires that the observer observes
them:

. Reads and writes caused by loads and stores appearing in program order before the
Store-Release.

. Writes that have been observed by the PE executing the Store-Release before executing the
Store-Release.

2. The write caused by the Store-Release.

There are no additional ordering requirements on loads or stores that appear in program order after the
Store-Release.

A Store-Release instruction is multi-copy atomic when observed with a Load-Acquire instruction.

In addition, for accesses to a memory-mapped peripheral of an arbitrary system-defined size that is defined using
Device memory, these instructions have the following requirements:

A Load-Acquire to an address in the memory-mapped peripheral will ensure that all memory accesses using
Device memory types to the same memory-mapped peripheral that are architecturally required to be observed
after the Load-Acquire will arrive at the memory-mapped peripheral after the memory access of the
Load-Acquire.

A Store-Release to an address in the memory-mapped peripheral will ensure that all memory accesses using
Device memory types to the same memory-mapped peripheral that are architecturally required to be observed
before the Store-Release will arrive at the memory-mapped peripheral before the memory access of the
Store-Release.

Any memory access to the memory-mapped peripheral that are architecturally required to be ordered before
the memory access of a Store-Release will arrive at the memory-mapped peripheral before any memory
access to the same memory-mapped peripheral that are architecturally required to be ordered after the
memory access of a Load-Acquire to the same memory location as the Store-Release, where the
Load-Acquire has observed the value stored by the Store-Release.

Load-Acquire and Store-Release, other than Load-Acquire Exclusive Pair and Store-Release-Exclusive Pair, access
only a single data element. This access is single-copy atomic. The address of the data object must be aligned to the
size of the data element being accessed, otherwise the access generates an Alignment fault.

Load-Acquire Exclusive Pair and Store-Release Exclusive Pair access two data elements. The address supplied to
the instructions must be aligned to twice the size of the element being loaded, otherwise the access generates an
Alignment fault.

B2-88

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.7 Memory ordering

A Store-Release Exclusive instruction only has the release semantics if the store is successful.

Note
. Each Load-Acquire Exclusive and Store-Release Exclusive instruction is essentially a variant of the
equivalent Load-Exclusive or Store-Exclusive instruction. All usage restrictions and single-copy atomicity
properties:

— That apply to the Load-Exclusive instructions also apply to the Load-Acquire Exclusive instructions.
— That apply to the Store-Exclusive instructions also apply to the Store-Release Exclusive instructions.

. The Load-Acquire/Store-Release instructions can remove the requirement to use the explicit DMB memory
barrier instruction.

B2.7.4 Summary of the memory ordering rules

The following is a concise list of the situations that are required, by the ARM architecture specification, to cause
externally-visible order of memory. This ordering means that if memory transaction A has externally visible order
ahead of memory transaction B, then all observers within the shareability domains of A and B will observe A
before B. See Terms used in the summary of the memory ordering rules for definitions of the terms used.

Note
This list applies to both AArch32 state and AArch64 state, and is consistent with the requirements of ARMv7.

1. DMB and DSB barrier instructions, and load acquire/store release instructions, create externally-visible order as
defined by those instructions.

2. A True or False Address dependency from a Load to a Load or from a Load to a Store creates
externally-visible order.

3. A True Control dependency from a Load to an ISB instruction creates externally-visible order between the
load and any memory accesses after the ISB instruction.

4, A True Register data dependency from a Load to a Store creates externally-visible order.
5. A True Control dependency from a Load to a Store creates externally-visible order.

6. Memory is coherent within the shareability domain of a memory location, which means there is a total order
of all writes to that location that all observers within that shareability domain will agree on.

Note
A consequence of this is that reads to the same location by the same PE are observed in order.

7. A Dependency from a Store to a Load through memory between different PEs creates externally-visible order
but stores are not multi-copy atomic except where explicitly defined to be by the definition of the store.

Note

A consequence of the lack of multi-copy atomicity is that a Store to Load dependency through memory on
the same PE does not create externally-visible order.

No other effects are required to create externally visible order in the ARM architecture.

Terms used in the summary of the memory ordering rules
The summary uses the following terms:

Register data dependency

This is defined in Address dependencies and order on page B2-84.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-89
ID121714 Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model

B2.7 Memory ordering

False Register data dependency

A False Register data dependency is a Register data dependency where no register in the system
holds a variable for which a change of the first data value causes a change of the second data value.

True Register data dependency

A True Register data dependency is a Register data dependency that is not a false Register data
dependency.

True Address dependency

A True Address dependency between a load and a subsequent memory transaction exists where
there is a True Register data dependency between the data value returned from the load and the
address used by the subsequent memory transaction.

False Address dependency

A False Address dependency between a load and a subsequent memory transaction exists where
there is a False Register data dependency between the data value returned from the load and the
address used by the subsequent memory transaction.

True Control dependency
A True Control dependency between a load and a subsequent instruction exists:

. Where there is a True Register data dependency between the data value returned from the
load and data value used in the evaluation of a conditional branch and the subsequent
instruction is only executed as a result of one of the possible outcomes of that conditional
branch.

. Where there is a True Register data dependency between the data value returned from the
load and the data value used in the evaluation of a subsequent instruction that is a conditional
selection, move, or computation for which both:

— The condition is determined by the returned data value.
— No input data value for the selection, move, or computation has a register data
dependency on the returned data value.
Dependency from a Store to a Load through memory

A Dependency from a Store to a Load through memory exists where the Store and Load are to the
same physical address, and value returned by the Load is the value that was written by the Store,
and could not be the value that was previously held in that memory location.

B2-90

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

B2.8 Memory types and attributes

In ARMV8 the ordering of accesses for locations of memory, referred to as the memory order model, is defined by
the memory attributes. The following sections describe this model:

.

.

Normal memory.
Device memory on page B2-93.
Memory access restrictions on page B2-98.

B2.8.1 Normal memory

The Normal memory type attribute applies to most memory in a system. It indicates that the hardware might perform
speculative data read accesses to these locations.

The Normal memory type has the following properties:

A write to amemory location with the Normal attribute completes in finite time. This means that it is globally
observed for the shareability domain of the memory location in finite time. For a Non-cacheable location, the
location is observed by all observers in finite time.

A completed write to a memory location with the Normal attribute is globally observed for the shareability
domain of the memory location in finite time without the need for explicit cache maintenance instructions or
barriers. For a Non-cacheable location, the completed write is globally observed for all observers in finite
time without the need for explicit cache maintenance instructions or barriers.

Writes to a memory location with the Normal memory attribute that are Non-cacheable must reach the
endpoint for that location in the memory system in finite time.

Unaligned memory accesses can access Normal memory if the system is configured to generate such
accesses.

There is no requirement for the memory system beyond the PE to be able to identify the elements accessed
by multi-register Load/Store instructions. See Multi-register loads and stores that access Normal memory on
page B2-93.

Note

The Normal memory attribute is appropriate for locations of memory that are idempotent, meaning that they
exhibit all of the following properties:

— Read accesses can be repeated with no side-effects.
— Repeated read accesses return the last value written to the resource being read.
— Read accesses can fetch additional memory locations with no side-effects.

— Write accesses can be repeated with no side-effects if the contents of the location accessed are
unchanged between the repeated writes or as the result of an exception, as described in this section.

— Unaligned accesses can be supported.
— Accesses can be merged before accessing the target memory system.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on
page B2-79 might be abandoned as a result of an exception being taken during the sequence of accesses. On
return from the exception the instruction is restarted, and therefore one or more of the memory locations
might be accessed multiple times. This can result in repeated write accesses to a location that has been
changed between the write accesses.

The following sections describe the other attributes for Normal memory:

Shareable Normal memory on page B2-92.
Non-shareable Normal memory on page B2-93.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-91
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

See also:
. Atomicity in the ARM architecture on page B2-79.

. Memory barriers on page B2-85. For accesses to Normal memory, a DMB instruction is required to ensure the
required ordering.

. Concurrent modification and execution of instructions on page B2-81.

Shareable Normal memory

A Normal memory location has a Shareability attribute that is one of:

. Inner Shareable, meaning it applies across the Inner Shareable shareability domain.

. Outer Shareable, meaning it applies across both the Inner Shareable and the Outer Sharable shareability
domains.

. Non-shareable.

The shareability attributes define the data coherency requirements of the location, that hardware must enforce. They
do not affect the coherency requirements of instruction fetches, see Synchronization and coherency issues between
data and instruction accesses on page B2-73.

Note

. System designers can use the shareability attribute to specify the locations in Normal memory for which
coherency must be maintained. However, software developers must not assume that specifying a memory
location as Non-shareable permits software to make assumptions about the incoherency of the location
between different PEs in a shared memory system. Such assumptions are not portable between different
multiprocessing implementations that might use the shareability attribute. Any multiprocessing
implementation might implement caches that are shared, inherently, between different processing elements.

. This architecture assumes that all PEs that use the same operating system or hypervisor are in the same Inner
Shareable shareability domain.

Shareable, Inner Shareable, and Outer Shareable Normal memory
The ARM architecture abstracts the system as a series of Inner and Outer Shareability domains.

Each Inner Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Inner Shareable attribute made by any member of that set.

Each Outer Shareability domain contains a set of observers that are data coherent for each member of that set for
data accesses with the Outer Shareable attribute made by any member of that set.

The following properties also hold:
. Each observer is only a member of a single Inner Shareability domain.
. Each observer is only a member of a single Outer Shareability domain.

. All observers in an Inner Shareability domain are always members of the same Outer Shareability domain.
This means that an Inner Shareability domain is a subset of an Outer Shareability domain, although it is not
required to be a proper subset.

Note

. Because all data accesses to Non-cacheable locations are data coherent to all observers, Non-cacheable
locations are always treated as Outer Shareable.

. The Inner Shareable domain is expected to be the set of PEs controlled by a single hypervisor or operating
system.

B2-92

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

The details of the use of the shareability attributes are system-specific. Example B2-1 shows how they might be
used.

Example B2-1 Use of shareability attributes

In an implementation, a particular subsystem with two clusters of PEs has the requirement that:

. In each cluster, the data caches or unified caches of the PEs in the cluster are transparent for all data accesses
to memory locations with the Inner Shareable attribute.

. However, between the two clusters, the caches:
— Are not required to be coherent for data accesses that have only the Inner Shareable attribute.
— Are coherent for data accesses that have the Outer Shareable attribute.

In this system, each cluster is in a different shareability domain for the Inner Shareable attribute, but all components
of the subsystem are in the same shareability domain for the Outer Shareable attribute.

A system might implement two such subsystems. If the data caches or unified caches of one subsystem are not
transparent to the accesses from the other subsystem, this system has two Outer Shareable shareability domains.

Having two levels of shareability means system designers can reduce the performance and power overhead for
shared memory locations that do not need to be part of the Outer Shareable shareability domain.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account
of the possibility of accesses by more than one observer in the same Shareability domain.

Non-shareable Normal memory

For Normal memory locations, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single PE.

A location in Normal memory with the Non-shareable attribute does not require the hardware to make data accesses
by different observers coherent, unless the memory is Non-cacheable. For a Non-shareable location, if other
observers share the memory system, software must use cache maintenance instructions, if the presence of caches
might lead to coherency issues when communicating between the observers. This cache maintenance requirement
is in addition to the barrier operations that are required to ensure memory ordering.

For Non-shareable Normal memory, it is IMPLEMENTATION DEFINED whether the Load-Exclusive and
Store-Exclusive synchronization primitives take account of the possibility of accesses by more than one observer.

Multi-register loads and stores that access Normal memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture.

For all instructions that load or store one or more SIMD and floating-point register from an Exception level there is
no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load or store instructions.

B2.8.2 Device memory

The Device memory type attributes define memory locations where an access to the location can cause side-effects,
or where the value returned for a load can vary depending on the number of loads performed. Typically, the Device
memory attributes are used for memory-mapped peripherals and similar locations.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-93
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

The attributes for ARMv8 Device memory are:
Gathering Identified as G or nG, see Gathering on page B2-96.
Reordering Identified as R or nR, see Reordering on page B2-97.

Early Write Acknowledgement hint
Identified as E or nE, see Early Write Acknowledgement on page B2-97.

The ARMV8 Device memory types are:

Device-nGnRnE Device non-Gathering, non-Reordering, No Early write acknowledgement.
Equivalent to the Strongly-ordered memory type in earlier versions of the architecture.

Device-nGnRE Device non-Gathering, non-Reordering, Early Write Acknowledgement.
Equivalent to the Device memory type in earlier versions of the architecture.

Device-nGRE Device non-Gathering, Reordering, Early Write Acknowledgement.

ARMV8 adds this memory type to the translation table formats found in earlier versions of
the architecture. The use of barriers is required to order accesses to Device-nGRE memory.

Device-GRE Device Gathering, Reordering, Early Write Acknowledgement.

ARMv8 adds this memory type to the translation table formats found in earlier versions of
the architecture. Device-GRE memory has the fewest constraints. It behaves similar to
Normal memory, with the restriction that speculative accesses to Device-GRE memory is
forbidden.

Collectively these are referred to as any Device memory type. Going down the list, the memory types are described
as getting weaker; conversely the going up the list the memory types are described as getting stronger.

Note

. As the list of types shows, these additional attributes are hierarchical. For example, a memory location that
permits Gathering must also permit Reordering and Early Write Acknowledgement.

. The architecture does not require an implementation to distinguish between each of these memory types and
ARM recognizes that not all implementations will do so. The subsection that describes each of the attributes,
describes the implementation rules for the attribute.

. Earlier versions of the ARM architecture defined the following memory types:
— Strongly-ordered memory. This is the equivalent of the Device-nGnRnE memory type.
— Device memory. This is the equivalent of the Device-nGnRE memory type.

All of these memory types have the following properties:

. Speculative data accesses are not permitted to any memory location with any Device memory attribute. This
means that each memory access to any Device memory type must be one that would be generated by a simple
sequential execution of the program.

Three exceptions to this apply:

— Reads generated by the SIMD and floating-point instructions can access bytes that are not explicitly
accessed by the instruction if the bytes accessed are in a 16-byte window, aligned to 16-bytes, that
contains at least one byte that is explicitly accessed by the instruction.

— For Device memory with the Gathering attribute, reads generated by the LDNP instructions are
permitted to access bytes that are not explicitly accessed by the instruction, provided that the bytes
accessed are in a 128-byte window, aligned to 128-bytes, that contains at least one byte that is
explicitly accessed by the instruction.

B2-94

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

— Where a load or store instruction performs a sequence of memory accesses, as opposed to one
single-copy atomic access as defined in the rules for single-copy atomicity, these accesses might occur
multiple times as a result of executing the load or store instruction. See Single-copy atomicity on
page B2-79.

Note

— Aninstruction that generates a sequence of accesses as described in Atomicity in the ARM architecture
on page B2-79 might be abandoned as a result of an exception being taken during the sequence of
accesses. On return from the exception the instruction is restarted, and therefore one or more of the
memory locations might be accessed multiple times. This can result in repeated accesses to a location
where the program only defines a single access. For this reason, ARM strongly recommends that no
accesses to Device memory are performed from a single instruction that spans the boundary of a
translation granule or which in some other way could lead to some of the accesses being aborted.

— Write speculation that is visible to other observers is prohibited for all memory types.

. A write to a memory location with any Device memory attribute completes in finite time. This means that it
is globally observed for all observers in the system in finite time.

. If a location with any Device memory attribute changes without an explicit write by an observer, this change
must also be globally observed for all observers in the system in finite time. Such a change might occur in a
peripheral location that holds status information.

. A completed write to a memory location with any Device memory attribute is globally observed for all
observers in finite time without the need for explicit maintenance.

. Data accesses to memory locations are coherent for all observers in the system, and correspondingly are
treated as being Outer Shareable.

. A memory location with any Device memory attribute cannot be allocated into a cache.

. Writes to a memory location with any Device memory attribute must reach the endpoint for that address in
the memory system in finite time. Typically, the endpoint is a peripheral or some physical memory.

. All accesses to memory with any Device memory attribute must be aligned. Any unaligned access generates
an Alignment fault at the first stage of translation that defined the location as being Device.

Note

In the Non-secure EL1 translation regime in systems where HCR_EL2.TGE == 1 and HCR_EL2.DC == 0,
any Alignment fault that results from the fact that all locations are treated as Device is a fault at the first stage
of translation. This causes ESR_EL2.1SS.[24] to be 0.

. Hardware does not prevent speculative instruction fetches from a memory location with any of the Device
memory attributes unless the memory location is also marked as Execute-never for all Exception levels.

Note

This means that to prevent speculative instruction fetches from memory locations with Device memory
attributes, any location that is assigned any Device memory type must also be marked as Execute-never for
all Exception levels. Failure to mark a memory location with any Device memory attribute as Execute-never
for all Exception levels is a programming error.

For instruction fetches, if branches cause the program counter to point to an area of memory with the Device
attribute which is not marked as Execute-never for the current Exception level, an implementation can either:

. Treat the instruction fetch as if it were to a memory location with the Normal Non-cacheable attribute.
. Take a Permission fault.
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-95

ID121714 Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Gathering

In the Device memory attribute:

G Indicates that the location has the Gathering attribute.

nG Indicates that the location does not have the Gathering attribute, meaning it is non-Gathering.

The Gathering attribute determines whether it is permissible for either:

. Multiple memory accesses of the same type, read or write, to the same memory location to be merged into a
single transaction.

. Multiple memory accesses of the same type, read or write, to different memory locations to be merged into
a single memory transaction on an interconnect.

Note

This also applies to writebacks from the cache, whether caused by a Natural eviction or as a result of a cache
maintenance instruction.

For memory types with the Gathering attribute, either of these behaviors is permitted, provided that the ordering and
coherency rules of the memory location are followed.

For memory types with the non-Gathering attribute, neither of these behaviors is permitted. As a result:

. The number of memory accesses that are made corresponds to the number that would be generated by a
simple sequential execution of the program.

. All access occur at their programmed size, except that there is no requirement for the memory system beyond
the PE to be able to identify the elements accessed by multi-register Load/Store instructions. See
Multi-register loads and stores that access Device memory on page B2-98.

Gathering between memory accesses separated by a memory barrier that affects those memory accesses is not
permitted. This applies if one memory access is in Group A and one memory access is in Group B. That is, gathering
is not permitted between a memory access in Group A and a memory access in Group B if the two accesses are
separated by a barrier that affects at least one of the accesses.

Gathering between two memory accesses generated by a Load-Acquire/Store-Release is not permitted.

A read from a memory location with the non-Gathering attribute cannot come from a cache or a buffer, but must
come from the endpoint for that address in the memory system. Typically this is a peripheral or physical memory.

Note

. A read from a memory location with the Gathering attribute can come from intermediate buffering of a
previous write, provided that:

— The accesses are not separated by a DMB or DSB barrier that affects both of the accesses, for example if
one access is in Group A and the other is in Group B.

— The accesses are not separated by other ordering constructions that require that the accesses are in
order. Such a construction might be a combination of Load-Acquire and Store-Release.

— The accesses are not generated by a Store-Release instruction.

. The ARM architecture only defines programmer visible behavior. Therefore, gathering can be performed if
a programmer cannot tell whether gathering has occurred.

An implementation is permitted to perform an access with the Gathering attribute in a manner consistent with the
requirements specified by the Non-gathering attribute.

An implementation is not permitted to perform an access with the Non-gathering attribute in a manner consistent
with the relaxations allowed by the Gathering attribute.

B2-96

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Reordering

In the Device memory attribute:
R Indicates that the location has the Reordering attribute.
nR Indicates that the location does not have the Reordering attribute, meaning it is non-Reordering.

For all memory types with the non-Reordering attribute, the order of memory accesses arriving at a single peripheral
of IMPLEMENTATION DEFINED size, as defined by the peripheral, must be the same order that occurs in a simple
sequential execution of the program.That is, the accesses appear in program order. This ordering applies to all
accesses using any of the memory types with the non-Reordering attribute. As a result, if there is a mixture of
Device-nGnRE and Device-nGnRnE accesses to the same peripheral, these occur in program order. If the memory
accesses are not to a peripheral, then this attribute imposes no restrictions.

Note

. The IMPLEMENTATION DEFINED size of the single peripheral is the same as applies for the ordering guarantee
provided by the DMB instruction.

. The ARM architecture only defines programmer visible behavior. Therefore, reordering can be performed if
a programmer cannot tell whether reordering has occurred.

An implementation:

. Is permitted to perform an access with the Reordering attribute in a manner consistent with the requirements
specified by the non-Reordering attribute.

. Is not permitted to perform an access with the non-Reordering attribute in a manner consistent with the
relaxations allowed by the Reordering attribute.

The non-Reordering attribute does not require any additional ordering, other than that which applies to Normal
memory, between:

. Accesses with the non-Reordering attribute and accesses with the Reordering attribute.

. Accesses with the non-Reordering attribute and accesses to Normal memory.
. Accesses with the non-Reordering attribute and accesses to different peripherals of IMPLEMENTATION
DEFINED Size.

The non-Reordering attribute has no effect on the ordering of cache maintenance instructions, even if the memory
location specified in the instruction has the non-Reordering attribute.

Early Write Acknowledgement

In the Device memory attribute:
E Indicates that the location has the Early Write Acknowledgement attribute.
nE Indicates that the location has the No Early Write Acknowledgement attribute.

Early Write Acknowledgement is a hint to the platform memory system. Assigning the No Early Write
Acknowledgement attribute to a Device memory location recommends that only the endpoint of the write access
returns a write acknowledgement of the access, and that no earlier point in the memory system returns a write
acknowledge. This means that a DSB barrier, executed by the PE that performed the write to the No Early Write
Acknowledgement location, completes only after the write has reached its endpoint in the memory system.
Typically, this endpoint is a peripheral or physical memory.

When the Early Write Acknowledgement attribute is assigned to a Device memory location, there is no such
recommendation for the handling of accesses to that location.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-97
ID121714 Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

B2.8.3

Note

. The Early Write Acknowledgement hint has no effect on the ordering rules. The purpose of signalling no
Early Write Acknowledgement is to signal to the interconnect that the peripheral requires the ability to signal
the acknowledgement. The No Write Acknowledgement signal also provides an additional semantic that can
be interpreted by the driver that is accessing the peripheral.

. This attribute is treated as a hint, as the exact nature of the interconnects accessed by a PE is outside the scope
of the ARM architecture definition, and not all interconnects provide a mechanism to ensure that a write has
reached the physical endpoint of the memory system.

. ARM recommends that writes with the No Early Write Acknowledgement hint are used for PCle
configuration writes. However, the mechanisms by which PCle configuration writes are identified are
IMPLEMENTATION DEFINED.

. ARM strongly recommends that the Early Write Acknowledgement hint is not ignored by a PE, but is made
available for use by the system.

Because the No Early Write Acknowledgement attribute is a hint:

. An implementation is permitted to perform an access with the Early Write Acknowledgement attribute in a
manner consistent with the requirements specified by the No Early Write Acknowledgement attribute.

. An implementation is permitted to perform an access with the No Early Write Acknowledgement attribute
in a manner consistent with the relaxations allowed by the Early Write Acknowledgement attribute.

Multi-register loads and stores that access Device memory

For all instructions that load or store more than one general-purpose register from an Exception level there is no
requirement for the memory system beyond the PE to be able to identify the size of the elements accessed by these
load or store instructions.

For all instructions that load or store more than one general-purpose register from an Exception level the order in
which the registers are accessed is not defined by the architecture. This applies even to accesses to any type of
Device memory.

For all instructions that load or store one or more floating-point and SIMD register from an Exception level there is
no requirement for the memory system beyond the PE to be able to identify the size of the element accessed by these
load or store instructions, even for access to any type of Device memory.

Memory access restrictions

The following restrictions apply to memory accesses:

. For accesses to any two bytes, p and g, that are generated by the same instruction:

— The bytes p and g must have the same memory type and shareability attributes, otherwise the results
are CONSTRAINED UNPREDICTABLE. For example, an LD1, ST1, or an unaligned load or store that spans
the boundary between Normal memory and Device memory is CONSTRAINED UNPREDICTABLE.

— Except for possible differences in the cache allocation hints, ARM deprecates having different
cacheability attributes for bytes p and qg.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a page boundary with different
memory types or shareability attributes on page J1-5403.

. The accesses of an instruction that causes multiple accesses to any type of Device memory must not cross a
4KB address boundary, otherwise the effect is CONSTRAINED UNPREDICTABLE. For this reason, it is important
that an access to a volatile memory device is not made using a single instruction that crosses a 4KB address
boundary.

B2-98

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.8 Memory types and attributes

Note

This situation is CONSTRAINED UNPREDICTABLE even if the cause of the accesses is an unaligned access to
any type of Device memory in an implementation that includes the Virtualization Extensions.

ARM expects this restriction to impose constraints on the placing of volatile memory devices in the memory
map of a system, rather than expecting a compiler to be aware of the alignment of memory accesses.

For the permitted CONSTRAINED UNPREDICTABLE behavior, see Crossing a peripheral boundary with a
Device access on page J1-5403.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-99
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.9 Mismatched memory attributes

B2.9 Mismatched memory attributes

Memory attributes are controlled by privileged software. For more information, see Chapter D4 The AArch64

Virtual Memory System Architecture.

Physical memory locations are accessed with mismatched attributes if all accesses to the location do not use a

common definition of all of the following attributes of that location:

. Memory type, Device or Normal.

. Shareability.

. Cacheability, for the same level of the inner or outer cache, but excluding any cache allocation hints.

Collectively these are referred to as memory attributes.

Note

The terms location and memory location refer to any byte within the current coherency granule and are used

interchangeably.

When a memory location is accessed with mismatched attributes the only software visible effects are one or more

of the following:

. Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— Avread of the memory location by one agent might not return the value most recently written to that
memory location by the same agent.

— Multiple writes to the memory location by one agent with different memory attributes might not be
ordered in program order.

. There might be a loss of coherency when multiple agents attempt to access a memory location.

. There might be a loss of properties derived from the memory type, as described in later bullets in this section.

. If all Load-Exclusive/Store-Exclusive instructions executed across all threads to access a given memory
location do not use consistent memory attributes, the exclusive monitor state becomes UNKNOWN.

. Bytes written without the Write-Back cacheable attribute within the same Write-Back granule as bytes
written with the Write-Back cacheable attribute might have their values reverted to the old values as a result
of cache Write-Back.

The loss of properties associated with mismatched memory type attributes refers only to the following properties of

Device memory that are additional to the properties of Normal memory:

. Prohibition of speculative read accesses.
. Prohibition on Gathering.
. Prohibition on Re-ordering.

For the following situations, when a physical memory location is accessed with mismatched attributes, a more

restrictive set of behaviors applies. The description of each situation also describes the behaviors that apply:

1. If the only memory type mismatch associated with a memory location across all users of the memory location
is between different types of Device memory, then all accesses might take the properties of the weakest
Device memory type.

2. Any agent that reads that memory location using the same common definition of the shareability and
cacheability attributes is guaranteed to access it coherently, to the extent required by that common definition
of the memory attributes, only if all of the following conditions are met:

. All aliases to the memory location with write permission both use a common definition of the
shareability and cacheability attributes for the memory location, and either:
— Have the inner cacheability attribute the same as the outer cacheability attribute.
— In the Non-secure EL1 translation regime, have HCR_EL2.MIOCNCE set to 0.
. All aliases to a memory location use a definition of the shareability attributes that encompasses all the
agents with permission to access the location.
B2-100 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.9 Mismatched memory attributes

The possible software-visible effects caused by mismatched attributes for a memory location are defined
more precisely if all of the mismatched attributes define the memory location as one of:

. Any Device memory type.

. Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only permitted software-visible effects of the mismatched attributes are one or more of the
following:

. Possible loss of the properties that are derived from the memory type, when multiple agents attempt
to access the memory location.

. Possible reordering of memory transactions to the same memory location with different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory location that might use different attributes.

Where there is a loss of the uniprocessor semantics, ordering, or coherency, the following approaches can be used:

1.

If the mismatched attributes for a memory location all assign the same shareability attribute to the location,
any loss of uniprocessor semantics, ordering, or coherency within a shareability domain can be avoided by
use of software cache management. To do so, software must use the techniques that are required for the
software management of the ordering or coherency of cacheable locations between agents a in different
shareability domains. This means:

. Before writing to a location not using the Write-Back attribute, software must invalidate, or clean, a
location from the caches if any agent might have written to the location with the Write-Back attribute.
This avoids the possibility of overwriting the location with stale data.

. After writing to a location with the Write-Back attribute, software must clean the location from the
caches, to make the write visible to external memory.

. Before reading the location with a cacheable attribute, software must invalidate the location from the
caches, to ensure that any value held in the caches reflects the last value made visible in external
memory.

In all cases:

. Location refers to any byte within the current coherency granule.

. A clean and invalidate instruction can be used instead of a clean instruction, or instead of an invalidate
instruction.

. In the sequences outlined in this section, all cache maintenance instructions and memory transactions

must be completed, or ordered by the use of barrier operations, if they are not naturally ordered by the
use of a common address, see Ordering and completion of data and instruction cache instructions on
page D3-1706.

Note

With software management of coherency, race conditions can cause loss of data. A race condition occurs
when different agents write simultaneously to bytes that are in the same location, and the invalidate, write,
clean sequence of one agent overlaps with the equivalent sequence of another agent. A race condition also
occurs if the first operation of either sequence is a clean, rather than an invalidate.

If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be
made with different shareability attributes, then uniprocessor semantics, ordering, and coherency are
guaranteed only if:

. Each PE that accesses the location with a cacheable attribute performs a clean and invalidate of the
location before and after accessing that location.

. A DMB barrier with scope that covers the full shareability of the accesses is placed between any accesses
to the same memory location that use different attributes.

Note
The Note in rule 1 of this list, about possible race conditions, also applies to this rule.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-101
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.9 Mismatched memory attributes

In addition, if multiple agents attempt to use Load-Exclusive or Store-Exclusive instructions to access a location,
and the accesses from the different agents have different memory attributes associated with the location, the

exclusive monitor state becomes UNKNOWN.

ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

ARM DDI 0487A.e

Copyright © 2013, 2014 ARM Limited. All rights reserved.
ID121714

B2-102
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

B2.10 Synchronization and semaphores

ARMV8 provides non-blocking synchronization of shared memory, using synchronization primitives. The
information in this section about memory accesses by synchronization primitives applies to accesses to both Normal
and Device memory.

Note
Use of the ARMv8 synchronization primitives scales for multiprocessing system designs.

Table B2-2 shows the synchronization primitives and the associated CLREX instruction.

Table B2-2 Synchronization primitives and associated instruction

Function Instruction

Load-Exclusive

Paira LDXP, LDAXP
Registera LDXR, LDAXR
Halfword LDXRH, LDAXRH
Byte LDXRB, LDAXRB

Store-Exclusive

Paira STXP, STLXP
Registera STXR, STLXR
Halfword STXRH, STLXRH
Byte STXRB, STLXRB
Clear-Exclusive CLREX

a. The instruction operates on a doubleword if accessing an
X register, or on a word if accessing a W register.

The model for the use of a Load-Exclusive/Store-Exclusive instruction pair accessing a non-aborting memory

address x is:
. The Load-Exclusive instruction reads a value from memory address x.
. The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other

observer, process, or thread has performed a more recent store to address x. The Store-Exclusive instruction
returns a status bit that indicates whether the memory write succeeded.

A Load-Exclusive instruction marks a small block of memory for exclusive access. The size of the marked block is
IMPLEMENTATION DEFINED, see Marking and the size of the marked memory block on page B2-109. A
Store-Exclusive instruction to any address in the marked block clears the marking.

Note
In this section, the term PE includes any observer that can generate a Load-Exclusive or a Store-Exclusive
instruction.
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-103

ID121714 Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

B2.10.1

Exclusive access instructions and Non-shareable memory locations

For memory locations for which the shareability attribute is Non-shareable, the exclusive access instructions rely
on a local monitor that marks any address from which the PE executes a Load-Exclusive instruction. Any
non-aborted attempt by the same PE to use a Store-Exclusive instruction to modify any address is guaranteed to
clear the marking.

A Load-Exclusive instruction performs a load from memory, and:
. The executing PE marks the physical memory address for exclusive access.
. The local monitor of the executing PE transitions to the Exclusive Access state.

A Store-Exclusive instruction performs a conditional store to memory that depends on the state of the local monitor:

If the local monitor is in the Exclusive Access state

. If the address of the Store-Exclusive instruction is the same as the address that has been
marked in the monitor by an earlier Load-Exclusive instruction, then the store occurs.
Otherwise, it is IMPLEMENTATION DEFINED whether the store occurs.

. A status value is returned to a register:

— If the store took place the status value is 0.
— Otherwise, the status value is 1.

. The local monitor of the executing PE transitions to the Open Access state.

If the local monitor is in the Open Access state
. No store takes place.
. A status value of 1 is returned to a register.
. The local monitor remains in the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.
When a PE writes using any instruction other than a Store-Exclusive instruction:

. If the write is to a physical address that is not marked as Exclusive Access by its local monitor and that local
monitor is in the Exclusive Access state it is IMPLEMENTATION DEFINED whether the write affects the state of
the local monitor.

. If the write is to a physical address that is marked as Exclusive Access by its local monitor it is
IMPLEMENTATION DEFINED Whether the write affects the state of the local monitor.

It is IMPLEMENTATION DEFINED Whether a store to a marked physical address causes a mark in the local monitor to
be cleared if that store is by an observer other than the one that caused the physical address to be marked.

Figure B2-4 on page B2-105 shows the state machine for the local monitor and the effect of each of the operations
shown in the figure.

B2-104

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

LoadExc1(x) LoadExc1(x)

| v | J
Open Exclusive

|—> Access Access
Tf -

StoreExc1(x) Store(Marked_address)* Store(Marked_address)*
Store(x) Store(!Marked_address)* Store(!Marked_address)*
CLREX StoreExc1(Marked_address)
StoreExcl(!Marked_address)
CLREX

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExcT operation updates the marked address to the most significant bits of the address x used for the operation.

Figure B2-4 Local monitor state machine diagram

For more information about marking see Marking and the size of the marked memory block on page B2-109.

Note

For the local monitor state machine, as shown in Figure B2-4:

.

The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any physical address, but instead treats any access as matching the address
of the previous Load-Exclusive instruction.

A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive instructions from
other PEs.

The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the local monitor.

It is IMPLEMENTATION DEFINED Whether the transition from Exclusive Access to Open Access state occurs
when the Store or StoreExc1 is from another observer.

Changes to the local monitor state resulting from speculative execution

The architecture permits a local monitor to transition to the Open Access state as a result of speculation, or from
some other cause. This is in addition to the transitions to Open Access state caused by the architectural execution
of an operation shown in Figure B2-4.

An implementation must ensure that:

The local monitor cannot be seen to transition to the Exclusive Access state except as a result of the
architectural execution of one of the operations shown in Figure B2-4.

Any transition of the local monitor to the Open Access state not caused by the architectural execution of an
operation shown in Figure B2-4 must not indefinitely delay forward progress of execution.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-105
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

B2.10.2 Exclusive access instructions and Shareable memory locations

For memory locations with a Shareability attribute of Inner Shareable or Outer Shareable, exclusive access
instructions rely on:

. A local monitor for each PE in the system, that marks any address from which the PE executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory locations on page B2-104, except that for Shareable memory any Store-Exclusive is then subject to
checking by the global monitor if it is described in that section as doing at least one of the following:

— Updating memory.
— Returning a status value of 0.
The local monitor can ignore accesses from other PEs in the system.

. A global monitor that marks a physical address as exclusive access for a particular PE. This marking is used
later to determine whether a Store-Exclusive to that address that has not been failed by the local monitor can
occur. Any successful write to the marked block by any other observer in the shareability domain of the
memory location is guaranteed to clear the marking. For each PE in the system, the global monitor:

— Can hold one marked block.

— Maintains a state machine for each marked block it can hold.

Note

For each PE, the architecture only requires global monitor support for a single marked address. Any situation
that might benefit from the use of multiple marked addresses on a single PE is UNPREDICTABLE, See
Load-Exclusive and Store-Exclusive instruction usage restrictions on page B2-109.

Note

The global monitor can either reside within the PE, or exist as a secondary monitor at the memory interfaces.The
IMPLEMENTATION DEFINED aspects of the monitors mean that the global monitor and local monitor can be combined
into a single unit, provided that the unit performs the global monitor and local monitor functions defined in this
manual.

For Shareable memory locations, in some implementations and for some memory types, the properties of the global

monitor require functionality outside the PE. Some system implementations might not implement this functionality

for all locations of memory. In particular, this can apply to:

. Any type of memory in the system implementation that does not support hardware cache coherency.

. Non-cacheable memory, or memory treated as Non-cacheable, in an implementation that does support
hardware cache coherency.

In such a system, it is defined by the system:
. Whether the global monitor is implemented.
. If the global monitor is implemented, which address ranges or memory types it monitors.

Note

To support the use of the Load-Exclusive/Store-Exclusive mechanism when address translation is disabled, a
system might define at least one location of memory, of at least the size of the translation granule, in the system
memory map to support the global monitor for all ARM PEs within a common Inner Shareable domain. However,
this is not an architectural requirement. Therefore, architecturally-compliant software that requires mutual
exclusion must not rely on using the Load-Exclusive/Store-Exclusive mechanism, and must instead use a software
algorithm such as Lamport’s Bakery algorithm to achieve mutual exclusion.

B2-106 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Because implementations can choose which memory types are treated as Non-cacheable, the only memory types for
which it is architecturally guaranteed that a global exclusive monitor is implemented are:

. Inner shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

. Outer shareable, Inner Write-Back, Outer Write-Back Normal memory with Read allocation hints and Write
allocation hints and not transient.

The set of memory types that support atomic instructions must include all of the memory types for which a global
monitor is implemented.

If the global monitor is not implemented for an address range or memory type, then performing a
Load-Exclusive/Store-Exclusive instruction to such a location has one or more of the following effects:

. The instruction generates an external abort.

. The instruction generates an IMPLEMENTATION DEFINED MMU fault. This is reported using the Fault Status
code of ESR_ELX.DFSC = 110101.

. The instruction is treated as a NOP.

. The Load-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the
local monitor becomes UNKNOWN.

o The Store-Exclusive instruction is treated as if it were accessing a Non-shareable location, but the state of the

local monitor becomes UNKNOWN. In this case, if the store exclusive instruction is a store exclusive pair of
64-bit quantities, then the two quantities being stored might not be stored atomically.

. The value held in the result register of the Store-Exclusive instruction becomes UNKNOWN.

In addition, for write transactions generated by non-PE observers that do not implement exclusive accesses or other
atomic access mechanisms, the effect that writes have on the global and local monitors used by ARM PEs is
IMPLEMENTATION DEFINED. The writes might not clear the global monitors of other PEs for:

. Some address ranges.
. Some memory types.

Operation of the global monitor

A Load-Exclusive instruction from Shareable memory performs a load from memory, and causes the physical
address of the access to be marked as exclusive access for the requesting PE. This access also causes the exclusive
access mark to be removed from any other physical address that has been marked by the requesting PE.

Note
The global monitor only supports a single outstanding exclusive access to Shareable memory per PE.

A Load-Exclusive instruction by one PE has no effect on the global monitor state for any other PE.
A Store-Exclusive instruction performs a conditional store to memory:

. The store is guaranteed to succeed only if the physical address accessed is marked as exclusive access for the
requesting PE and both the local monitor and the global monitor state machines for the requesting PE are in
the Exclusive Access state. In this case:

— Asstatus value of 0 is returned to a register to acknowledge the successful store.

— Thefinal state of the global monitor state machine for the requesting PE is IMPLEMENTATION DEFINED.

— Iftheaddress accessed is marked for exclusive access in the global monitor state machine for any other
PE then that state machine transitions to Open Access state.

. If no address is marked as exclusive access for the requesting PE, the store does not succeed:
— Asstatus value of 1 is returned to a register to indicate that the store failed.
— The global monitor is not affected and remains in Open Access state for the requesting PE.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-107
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

. If a different physical address is marked as exclusive access for the requesting PE, it iS IMPLEMENTATION
DEFINED Whether the store succeeds or not:

— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the PE was in the Exclusive Access state before the
Store-Exclusive instruction it is IMPLEMENTATION DEFINED Whether that state machine transitions to
the Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each PE in the system. The

state machine for accesses to Shareable memory by PE(n) can respond to all the Shareable memory accesses visible

to it. This means it responds to:

. Accesses generated by PE(n).

. Accesses generated by the other observers in the shareability domain of the memory location. These accesses
are identified as (In).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive instruction in the system.

Clear global monitor event

Whenever the global monitor state for a PE changes from Exclusive access to Open access, an event is generated
and held in the Event register for that PE. This register is used by the Wait for Event mechanism, see Mechanisms
for entering a low-power state on page D1-1597.

Figure B2-5 shows the state machine for PE(n) in a global monitor.

LoadExc1(x,n)

| v |

Open Exclusive

|—> Access Access
|t | 1

LoadExc1(x,n)

|
=

CLREX(n)
CLREX(!n)
LoadExc1(x, !'n)
StoreExcl(x,n)
StoreExcl1(x, !'n)
Store(x,n)

StoreExcl(Marked_address, !'n)t
Store(Marked_address, !'n)
StoreExcl(Marked_address,n)*
StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*
CLREX(n)*

StoreExcl(Marked_address, !n)t
Store(!Marked_address,n)
StoreExcl(Marked_address,n)*
StoreExcl(!Marked_address,n)*
Store(Marked_address,n)*
CLREX(n)*

StoreExcl(!Marked_address, 'n)
Store(!Marked_address, 'n)
CLREX(!'n)

$StoreExcl(Marked_address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExcT represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction
Store represents any other store instruction.

Store(x, !'n)

Any LoadExc1 operation updates the marked address to the most significant bits of the address x used for the operation.
Figure B2-5 Global monitor state machine diagram for PE(n) in a multiprocessor system
For more information about marking see Marking and the size of the marked memory block on page B2-1009.

Note
For the global monitor state machine, as shown in Figure B2-5:

. The architecture does not require a load instruction by another PE, that is not a Load-Exclusive instruction,
to have any effect on the global monitor.

ARM DDI 0487A.e
ID121714

B2-108 Copyright © 2013, 2014 ARM Limited. All rights reserved.

Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

. Whether a Store-Exclusive instruction successfully updates memory or not depends on whether the address
accessed matches the marked Shareable memory address for the PE issuing the Store-Exclusive instruction,
and whether the local and global monitors are in the exclusive state. For this reason, Figure B2-5 on
page B2-108 only shows how the operations by (In) cause state transitions of the state machine for PE(n).

. A Load-Exclusive instruction can only update the marked Shareable memory address for the PE issuing the
Load-Exclusive instruction.

. When the global monitor is in the Exclusive Access state, it iS IMPLEMENTATION DEFINED whether a CLREX
instruction causes the global monitor to transition from Exclusive Access to Open Access state.
. It iS IMPLEMENTATION DEFINED:

— Whether a modification to a Non-shareable memory location can cause a global monitor to transition
from Exclusive Access to Open Access state.

— Whether a Load-Exclusive instruction to a Non-shareable memory location can cause a global monitor
to transition from Open Access to Exclusive Access state.

B2.10.3 Marking and the size of the marked memory block

When a Load-Exclusive instruction is executed, the resulting marked block ignores the least significant bits of the
64-bit memory address.

When a LDXR instruction is executed, a marked block of size 22 is created by ignoring the least significant bits of the
memory address. A marked address is any address within this marked block. For example, in an implementation
where a is 4, a successful LDXRB of address 0x341B4 defines a marked block using bits[47:4] of the address. This
means that the four words of memory from 0x341B@ to 0x341BF are marked for exclusive access.

The size of the marked memory block is called the Exclusives Reservation Granule. The Exclusives Reservation
Granule is IMPLEMENTATION DEFINED in the range 2 - 512 words:

. 3 words in an implementation where a is 4.
. 512 words in an implementation where a is 11.

In some implementations the CTR identifies the Exclusives Reservation Granule, see CTR_ELO. Otherwise,
software must assume that the maximum Exclusives Reservation Granule, 512 words, is implemented.

B2.10.4 Context switch support

An exception return clears the local monitor. As a result, performing a CLREX instruction as part of a context switch
is not required in most situations.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.

B2.10.5 Load-Exclusive and Store-Exclusive instruction usage restrictions

The Load-Exclusive and Store-Exclusive instructions are intended to work together as a pair, for example a
LDXP/STXP pair or a LDXR/STXR pair. To support different implementations of these functions, software must follow
the notes and restrictions given here.

The following notes describe the use of a LoadExc1/StoreExc1 pair, to indicate the use of any of the
Load-Exclusive/Store-Exclusive pairs shown in Table B2-2 on page B2-103:

. The exclusives support a single outstanding exclusive access for each PE thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusiveLocal()
function. If the target virtual address of a StoreExc1 is different from the virtual address of the preceding

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-109
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

LoadExc1 instruction in the same thread of execution, behavior can be UNPREDICTABLE. As a result, a
LoadExc1/StoreExc] pair can only be relied upon to eventually succeed if the LoadExcl and the StoreExcl are
executed with the same virtual address.

If two StoreExcl instructions are executed without an intervening LoadExc1 instruction the second StoreExcl
instruction returns a status value of 1. This means that:

— ARM recommends that, in a given thread of execution, every StoreExc1 instruction has a preceding
LoadExc1 instruction associated with it.

It is not necessary for every LoadExc1 instruction to have a subsequent StoreExc1 instruction.

An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a Store-Exclusive instruction is the same as the transaction size of the
preceding Load-Exclusive instruction executed in that thread. If the transaction size of a Store-Exclusive
instruction is different from the preceding Load-Exclusive instruction in the same thread of execution,
behavior can be UNPREDICTABLE. As a result, software can rely on an LoadExc1/StoreExcl pair to eventually
succeed only if they have the same size.

An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the Store-Exclusive instruction accesses the same number of registers as the preceding
Load-Exclusive instruction executed in that thread. If the Store-Exclusive instruction accesses a different
number of registers than the preceding Load-Exclusive instruction in the same thread of execution, behavior
iS CONSTRAINED UNPREDICTABLE. As a result, software can rely on an LoadExc1/StoreExc] pair to eventually
succeed only if they access the same number of registers. For more information see UNPREDICTABLE
behavior when Load-Exclusive/Store-Exclusive access a different number of registers on page B2-111.

An implementation might clear an exclusive monitor between the LoadExc1 instruction and the StoreExc],
instruction without any application-related cause. For example, this might happen because of cache evictions.
Software must, in any single thread of execution, avoid having any explicit memory accesses, system control
register updates, or cache maintenance instructions between the LoadExc1 instruction and the associated
StoreExcl instruction.

Implementations can benefit from keeping the LoadExc1 and StoreExc1 operations close together in a single
thread of execution. This minimizes the likelihood of the exclusive monitor state being cleared between the
LoadExc1 instruction and the StoreExc1 instruction. Therefore, for best performance, ARM strongly
recommends a limit of 128 bytes between LoadExc1 and StoreExc1 instructions in a single thread of execution.

The architecture sets an upper limit of 2048 bytes on the exclusive reservation granule that can be marked as
exclusive. For performance reasons, ARM recommends that objects that are accessed by exclusive accesses
are separated by the size of the exclusive reservations granule. This is a performance guideline rather than a
functional requirement.

After taking a Data Abort exception, the state of the exclusive monitors is UNKNOWN.

For the memory location accessed by a LoadExc1/StoreExc] pair, if the memory attributes for the LoadExc1
instruction differ from the memory attributes for the StoreExc1 instruction, behavior is UNPREDICTABLE.

This can occur either:

— Because the translation of the accessed address changes between the LoadExc1 instruction and the
StoreExcT instruction.

— Asaresult of using different virtual addresses, with different attributes, that point to the same physical
address. This case is covered by another bullet point in this list.

The effect of a data or unified cache invalidate, clean, or clean and invalidate instruction on a local or global
exclusive monitor that is in the Exclusive Access state is UNPREDICTABLE. The instruction might clear the
monitor, or it might leave it in the Exclusive Access state. For address-based maintenance instructions, this
also applies to the monitors of other PEs in the same shareability domain as the PE executing the cache
maintenance instruction, as determined by the shareability domain of the address being maintained.

B2-110

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Note

ARM strongly recommends that implementations ensure that the use of such maintenance instructions by a
PE in the Non-secure state cannot cause a denial of service on a PE in the Secure state.

. If the mapping of the virtual to physical address is changed between the LDREX instruction and the STREX

instruction, and the change is performed using a break-before-make sequence as described in Using
break-before-make when updating translation table entries on page D4-1829, if the STREX is performed after
another write to the same physical address as the STREX, and that other write was performed after the old
translation was properly invalidated and that invalidation was properly synchronized, then the STREX will not
pass its monitor check.

Note
ARM expects that, in many implementations, either:

— The TLB invalidation will clear either the local or global monitor.
— The physical address will be checked between the LDREX and STREX.

Note

In the event of repeatedly-contending Load-Exclusive/Store-Exclusive instruction sequences from multiple PEs, an
implementation must ensure that forward progress is made by at least one PE.

UNPREDICTABLE behavior when Load-Exclusive/Store-Exclusive access a different
number of registers

As stated in this section, an implementation can require that the instructions of a Load-Exclusive/Store-Exclusive
pair access the same number of registers. In such an implementation, this means behavior is CONSTRAINED
UNPREDICTABLE if, in a single thread of execution, either:

. An LDXP instruction of two 32-bit quantities is followed by an STXR instruction of one 64-bit quantity at the
same address.

. An LDXR instruction of one 64-hit quantity is followed by an STXP instruction of two 32-bit quantities at the
same address.

In these cases, the CONSTRAINED UNPREDICTABLE behavior must be one of:
. The STXP or STXR instruction generates an external Data Abort.

. The STXP or STXR instruction generates an IMPLEMENTATION DEFINED MMU fault reported using the Fault
Status code of ESR_ELXx.DFSC = 0b110101.

. The STXP or STXR instruction always fails, returning a status of 1.
. The STXP or STXR instruction always passes, returning a status of 0.
. This STXP or STXR instruction has the same pass or fail behavior that it would have had if the instruction had

used the same size and number of registers as the preceding LDXR or LDXP instruction.

B2.10.6 Use of WFE and SEV instructions by spin-locks

ARMV8 provides Wait For Event, Send Event, and Send Event Local instructions, WFE, SEV, and SEVL, that can assist
with reducing power consumption and bus contention caused by PEs repeatedly attempting to obtain a spin-lock.
These instructions can be used at the application level, but a complete understanding of what they do depends on a
system level understanding of exceptions. They are described in Wait for Event mechanism and Send event on
page D1-1597. However, in ARMv8, when the global monitor for a PE changes from Exclusive Access state to
Open Access state, an event is generated.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. B2-111
Non-Confidential - Beta

B2 The AArch64 Application Level Memory Model
B2.10 Synchronization and semaphores

Note

This is equivalent to issuing an SEV instruction on the PE for which the monitor state has changed. It removes the
need for spinlock code to include an SEV instruction after clearing a spinlock.

B2-112 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Part C

The AArch64 Instruction Set

Chapter C1

The A64 Instruction Set

This chapter describes the A64 instruction set. It contains the following sections:

.

Introduction on page C1-116.

Structure of the A64 assembler language on page C1-117.
Address generation on page C1-122.

Instruction aliases on page C1-125.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

C1-115

C1 The A64 Instruction Set
C1.1 Introduction

Cl.1 Introduction

The instruction set supported in the AArch64 Execution state is known as A64.

All A64 instructions have a width of 32 bits. The A64 encoding structure breaks down into the following functional
groups:

. A miscellaneous group of branch instructions, exception generating instructions, and system instructions.

. Data processing instructions associated with general-purpose registers. These instructions are supported by
two functional groups, depending on whether the operands:
— Areall held in registers.

— Include an operand with a constant immediate value.

. Load and store instructions associated with the general-purpose register file and the SIMD and floating-point
register file.

. SIMD and scalar floating-point data processing instructions that operate on the SIMD and floating-point
registers.

The encoding hierarchy within a functional group breaks down as follows:

. A functional group consists of a set of related instruction classes. A64 instruction index by encoding on
page C4-180 provides an overview of the instruction encodings in the form of a list of instruction classes
within their functional groups.

. An instruction class consists of a set of related instruction forms. Instruction forms are documented in one of
two alphabetic lists:

— The load, store, and data processing instructions associated with the general-purpose registers,
together with those in the other instruction classes. See Chapter C6 A64 Base Instruction Descriptions.

— Theload, store, and data processing instructions associated with the SIMD and floating-point support.
See Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.
. An instruction form might support a single instruction syntax. Where an instruction supports more than one
syntax, each syntax is an instruction variant. Instruction variants can occur because of differences in:
— The size or format of the operands.
— The register file used for the operands.
— The addressing mode used for load/load/store memory operands.
Instruction variants might also arise as the result of other factors.
Instruction variants are described in the instruction description for the individual instructions.

A64 instructions have a regular bit encoding structure:
. 5-bit register operand fields at fixed positions within the instruction. For general-purpose register operands,
the values 0-30 select one of 31 registers. The value 31 is used as a special case that can:

— Indicate use of the current stack pointer, when identifying a load/store base register or in a limited set
of data processing instructions. See The stack pointer registers on page D1-1499.

— Indicate the value zero when used as a source register operand.
— Indicate discarding the result when used as a destination register operand.
For SIMD and floating-point register access, the value used selects one of 32 registers.
. Immediate bits that provide constant data processing values or address offsets are placed in contiguous bit

fields. Some computed values in instruction variants use one or more immediate bit fields together with the
secondary encoding bit fields.

All encodings that are not fully defined are described as unallocated. An attempt to execute an unallocated
instruction results in an Undefined Instruction exception, unless otherwise defined in the Exception model.

C1-116 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Cl.2 Structure of the A64 assembler language

The letter W denotes a general-purpose register holding a 32-bit word, and X denotes a general-purpose register
holding a 64-bit doubleword.

An A64 assembler recognizes both upper-case and lower-case variants of the instruction mnemonics and register
names, but not mixed case variants. An A64 disassembler can output either upper-case or lower-case mnemonics
and register names. Program and data labels are case-sensitive.

The A64 assembly language does not require the # character to introduce constant immediate operands, but an
assembler must allow immediate values introduced with or without the # character. ARM recommends that an A64
disassembler outputs a # before an immediate operand.

In Example C1-1 on page C1-118 the sequence // is used as a comment leader and A64 assemblers are encouraged
to accept this syntax.

Ci1.2.1 Common syntax terms

The following syntax terms are used frequently throughout the A64 instruction set description.

UPPER Text in upper-case letters is fixed. Text in lower-case letters is variable. This means that register
name Xn indicates that the X is required, followed by a variable register number, for example X29.

<> Any text enclosed by angle braces, < >, is a value that the user supplies. Subsequent text might
supply additional information.

{1 Any item enclosed by curly brackets, { }, is optional. A description of the item and how its presence
or absence affects the instruction is normally supplied by subsequent text. In some cases curly
braces are actual symbols in the syntax, for example when they surround a register list. These cases
are called out in the surrounding text.

[1] Any items enclosed by square brackets, [], constitute a list of alternative characters. A single one
of the characters can be used in that position and the subsequent text describes the meaning of the
alternatives. In some case the square brackets are part of the syntax itself, such as addressing modes
or vector elements. These cases are called out in the surrounding text.

alb Alternative words are separated by a vertical bar, |, and can be surrounded by parentheses to delimit
them. For example, U(ADD|SUB)W represents UADDW or USUBW.

I+

This indicates an optional + or - sign. If neither is used then + is assumed.

uimmn An n-bit unsigned, positive, immediate value.

simmn An n-bit two’s complement, signed immediate value, where n includes the sign bit.
SP See Register names on page C1-118.

Wn See Register names on page C1-118.

WSP See Register names on page C1-118.

WZR See Register names on page C1-118.

Xn See Register names on page C1-118.

XZR See Register names on page C1-118

Cl1.2.2 Instruction Mnemonics

The A64 assembly language overloads instruction mnemonics and distinguishes between the different forms of an
instruction based on the operand types. For example, the following ADD instructions all have different opcodes.
However, the programmer must only remember one mnemonic, as the assembler automatically chooses the correct
opcode based on the operands. The disassembler follows the same procedure in reverse.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C1-117
Non-Confidential - Beta

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Example C1-1 ADD instructions with different opcodes

ADD WO, W1, W2
ADD X0, X1, X2
ADD X0, X1, W2,
ADD X0, X1, #42

// add 32-bit register
// add 64-bit register

SXTW // add 64-bit extended register
// add 64-bit immediate

C1.23 Condition Code
The A64 ISA has some instructions that set condition flags or test condition codes or both. For information about
instructions that set the condition flags or use the condition mnemonics, see Condition flags and related instructions
on page C6-398.
Table C1-1 shows the available condition codes.
Table C1-1 Condition codes
cond Mnemonic Meaning (integer) Meaning (floating-point)2 Condition flags
0000 EQ Equal Equal Z==
0001 NE Not equal Not equal or unordered Z==
0010 CSorHs Carry set Greater than, equal, or unordered C==
0011 CCorLo Carry clear Less than C==
0100 MI Minus, negative Less than N ==
0101 PL Plus, positive or zero Greater than, equal, or unordered N ==
0110 VS Overflow Unordered V==
0111 VC No overflow Ordered V=0
1000 HI Unsigned higher Greater than, or unordered C=1&&Z==
1001 LS Unsigned lower or same Less than or equal I(C==1&& Z ==0)
1010 GE Signed greater than or equal Greater than or equal =V
1011 LT Signed less than Less than, or unordered NI=V
1100 GT Signed greater than Greater than Z==0&&N=V
1101 LE Signed less than or equal Less than, equal, or unordered 1(Z==0&& N==V)
1110 AL Always Always Any
1111 Nvb Always Always Any
a. Unordered means at least one NaN operand.
b. The condition code Nv exists only to provide a valid disassembly of the 0b1111 encoding, otherwise its behavior is identical to AL.
Cl.24 Register names
This section describes the AArch64 registers. It contains the following subsections:
. General-purpose register file and the stack pointer on page C1-119.
. SIMD and floating-point register file on page C1-119.
. SIMD and floating-point scalar register names on page C1-120.
. SIMD vector register names on page C1-120.
C1-118 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

. SIMD vector element names on page C1-120.

General-purpose register file and the stack pointer

The 31 general-purpose registers in the general-purpose register file are named R0-R30 and encoded in the
instruction register fields with values 0-30. A general-purpose register field that encodes the value 31 represents
either the current stack pointer or the zero register, depending on the instruction and the operand position.

When the registers are used in a specific instruction variant, they must be qualified to indicate the operand data size,
32 bits or 64 bits, and the data size of the instruction.

When the data size is 32 bits, the lower 32 bits of the register are used and the upper 32 bits are ignored on a read
and cleared to zero on a write.

Table C1-2 shows the qualified names for registers, where n is a register number 0-30.

Table C1-2 General-purpose register names

Name Size Encoding Description

Whn 32 bits 0-30 General-purpose register 0-30
Xn 64 bits 0-30 General-purpose register 0-30
WZR 32 hits 31 Zero register

XZR 64 bits 31 Zero register

WSP 32 bits 31 Current stack pointer

SP 64 bits 31 Current stack pointer

The following list provides further details relating to Table C1-2.
. The names Xn and Wn both refer to the same general-purpose register, Rn.
. There is no register named W31 or X31.

. The name SP represents the stack pointer for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as a read or write of the current stack pointer. When instructions
do not interpret this operand encoding as the stack pointer, use of the name SP is an error.

. The name WSP represents the current stack pointer in a 32-bit context.

. The name XZR represents the zero register for 64-bit operands where an encoding of the value 31 in the
corresponding register field is interpreted as returning zero when read or discarding the result when written.
When instructions do not interpret this operand encoding as the zero register, use of the name XZR is an error.

. The name WZR represents the zero register in a 32-bit context.

. The architecture does not define a special name for general-purpose register R30 that reflects its special role
as the link register on procedure calls. An A64 assembler must always use W30 and X30. Additional software
names might be defined as part of the Procedure Call Standard, see Procedure Call Standard for the ARM
64-bit Architecture.

SIMD and floating-point register file

The 32 registers in the SIMD and floating-point register file, V0-V31, hold floating-point operands for the scalar
floating-point instructions, and both scalar and vector operands for the SIMD instructions. When they are used in a
specific instruction form, the names must be further qualified to indicate the data shape, that is the data element size
and the number of elements or lanes within the register. A similar requirement is placed on the general-purpose
registers. See General-purpose register file and the stack pointer.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C1-119
Non-Confidential - Beta

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Note
The data type is described by the instruction mnemonics that operate on the data. The data type is not described by
the register name. The data type is the interpretation of bits within each register or vector element, whether these
are integers, floating-point values, polynomials or cryptographic hashes.

SIMD and floating-point scalar register names

SIMD and floating-point instructions that operate on scalar data only access the lower bits of a SIMD and
floating-point register. The unused high bits are ignored on a read and cleared to 0 on a write.

Table C1-3 shows the qualified names for accessing scalar SIMD and floating-point registers. The letter n denotes
a register number between 0 and 31.

Table C1-3 SIMD and floating-point scalar register names

Size Name
8 bits Bn
16 bits Hn
32bits Sn
64 bits Dn
128 bits Qn

SIMD vector register names

If a register holds multiple data elements on which arithmetic is performed in a parallel, SIMD, manner, then a
qualifier describes the vector shape. The vector shape is the element size and the number of elements or lanes. If the
element size in bits multiplied by the number of lanes does not equal 128, then the upper 64 bits of the register are
ignored on a read and cleared to zero on a write.

Table C1-4 shows the SIMD vector register names. The letter n denotes a register number between 0 and 31.

Table C1-4 SIMD vector register names

Shape Name

8 bits x 8 lanes Vn.8B

8 bits x 16 lanes Vn.16B
16 bits x 4 lanes ~ Vn.4H
16 bits x 8 lanes vn.8H

32 bits x 2 lanes Vn.2S

32 bits x 4 lanes Vn.4S

64 bits x 1 lane Vvn.1D

64 bits x 2 lanes Vn.2D

SIMD vector element names

Appending a constant, zero-based element index to the register name inside square brackets indicates that a single
element from a SIMD and floating-point register is used as a scalar operand. The number of lanes is not represented,
as it is not encoded in the instruction and can only be inferred from the index value.

C1-120

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C1 The A64 Instruction Set
C1.2 Structure of the A64 assembler language

Table C1-5 shows the vector register names and the element index. The letter i denotes the element index.

Table C1-5 Vector register names with element index

Size Name

8 bits Vn.B[i]

16 bits vn.H[1]

32 bits vn.S[i]

64 bits vn.D[i]

An assembler must accept a fully qualified SIMD register name, if the number of lanes is greater than the index
value. See SIMD vector register names on page C1-120. For example, an assembler must accept all of the following
forms as the name for the 32-bit element in bits [63:32] of the SIMD and floating-point register V9:

V9.S[1] //standard disassembly
V9.25[1] //optional number of Tanes
V9.4S[1] //optional number of Tanes

Note
The SIMD and floating-point register element name vn.S[0] is not equivalent to the scalar SIMD and floating-point
register name Sn. Although they represent the same bits in the register, they select different instruction encoding
forms, either the vector element or the scalar form.

SIMD vector register list

Where an instruction operates on multiple SIMD and floating-point registers, for example vector Load/Store
structure and table lookup operations, the registers are specified as a list enclosed by curly braces. This list consists
of either a sequence of registers separated by commas, or a register range separated by a hyphen. The registers must
be numbered in increasing order, modulo 32, in increments of one. The hyphenated form is preferred for
disassembly if there are more than two registers in the list and the register number are increasing. The following
examples are equivalent representations of a set of four registers v4 to v7, each holding four lanes of 32-bit elements:

{ V4.4S - V7.4S } //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S } //alternative representation

SIMD vector element list

Registers in a list can also have a vector element form. For example, the LD4 instruction can load one element into
each of four registers, and in this case the index is appended to the list as follows:

{ V4.5 - V7.S }[3] //standard disassembly
{ V4.4S, V5.4S, V6.4S, V7.4S }[3] //alternative with optional number of lanes

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C1l-121
Non-Confidential - Beta

C1 The A64 Instruction Set
C1.3 Address generation

C1.3 Address generation
The A64 instruction set supports 64-bit addresses. The valid address range is determined by the following factors:
. The size of the implemented virtual address space.
. Memory Management Unit (MMU) configuration settings.
The top 8 bits of the 64-bit address can be used as a tag, see Address tagging in AArch64 state on page D4-1726.
For more information on memory management and address translation, see Chapter D4 The AArch64 Virtual
Memory System Architecture.
Cl13.1 Register indexed addressing
The A64 instruction set allows a 64-bit index register to be added to the 64-bit base register, with optional scaling
of the index by the access size. Additionally it allows for sign-extension or zero-extension of a 32-bit value within
an index register, followed by optional scaling.
C1.3.2 PC-relative addressing
The A64 instruction set has support for position-independent code and data addressing:
. PC-relative literal loads have an offset range of + 1IMB.
. Process state flag and compare based conditional branches have a range of £ 1MB. Test bit conditional
branches have a restricted range of £ 32KB.
. Unconditional branches, including branch and link, have a range of + 128MB.
PC-relative Load/Store operations, and address generation with a range of + 4GB can be performed using two
instructions.
C1.3.3 Load/Store addressing modes
Load/Store addressing modes in the A64 instruction set require a 64-bit base address from a general-purpose register
X0-X30 or the current stack pointer, SP, with an optional immediate or register offset. Table C1-6 shows the
assembler syntax for the complete set of Load/Store addressing modes.
Table C1-6 A64 Load/Store addressing modes
Offset
Addressing Mode
Immediate Register Extended Register
Base register only (no offset) [base{, #0}] - -
Base plus offset [base{, #imm}] [base, Xm{, LSL #imm}] [base, Wm, (S|U)XTW {#imm}]
Pre-indexed [base, #imm]! - -
Post-indexed [base], #imm [base], Xmd -
Literal (PC-relative) Tabel - -
a. The post-indexed by register offset mode can be used with the SIMD Load/Store structure instructions described in
Load/Store Vector on page C3-144. Otherwise the post-indexed by register offset mode is not available.
Some types of Load/Store instruction support only a subset of the Load/Store addressing modes listed in
Table C1-6. Details of the supported modes are as follows:
. Base plus offset addressing means that the address is the value in the 64-bit base register plus an offset.
. Pre-indexed addressing means that the address is the sum of the value in the 64-bit base register and an offset,
and the address is then written back to the base register.
C1-122 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C1 The A64 Instruction Set
C1.3 Address generation

. Post-indexed addressing means that the address is the value in the 64-bit base register, and the sum of the
address and the offset is then written back to the base register.

. Literal addressing means that the address is the value of the 64-bit program counter for this instruction plus
a 19-bit signed word offset. This means that it is a 4 byte aligned address within +1MB of the address of this
instruction with no offset. Literal addressing can only be used for loads of at least 32 bits and for prefetch
instructions. The PC cannot be referenced using any other addressing modes. The syntax for labels is specific
to individual toolchains.

. An immediate offset can be unsigned or signed, and scaled or unscaled, depending on the type of Load/Store
instruction. When the immediate offset is scaled it is encoded as a multiple of the transfer size, although the
assembly language always uses a byte offset, and the assembler or disassembler performs the necessary
conversion. The usable byte offsets therefore depend on the type of Load/Store instruction and the transfer
size.

Table C1-7 shows the offset and the type of Load/Store instruction.

Table C1-7 Immediate offsets and the type of Load/Store instruction

Offset bits Sign Scaling Write-Back Load/Store type

0 - - - Exclusive/acquire/release
7 Signed Scaled Optional Register pair

9 Signed Unscaled Optional Single register

12 Unsigned Scaled No Single register

. A register offset means that the offset is the 64 bits from a general-purpose register, Xm, optionally scaled
by the transfer size, in bytes, if LSL #imm is present and where imm must be equal to logy(transfer_size).

. An extended register offset means that offset is the bottom 32 bits from a general-purpose register Wm,
sign-extended or zero-extended to 64 bits, and then scaled by the transfer size if so indicated by #imm, where
imm must be equal to logy(transfer_size). An assembler must accept Wm or Xm as an extended register
offset, but Wm is preferred for disassembly.

. Generating an address lower than the value in the base register requires a negative signed immediate offset
or a register offset holding a negative value.

. When stack alignment checking is enabled by system software and the base register is the SP, the current
stack pointer must be initially quadword aligned, that is aligned to 16 bytes. Misalignment generates a Stack
Alignment fault. The offset does not have to be a multiple of 16 bytes unless the specific Load/Store
instruction requires this. SP can not be used as a register offset.

Address calculation

General-purpose arithmetic instructions can calculate the result of most addressing modes and write the address to
a general-purpose register or, in most cases, to the current stack pointer.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C1-123
ID121714 Non-Confidential - Beta

C1 The A64 Instruction Set
C1.3 Address generation

Table C1-8 shows the arithmetic instructions that can compute addressing modes.

Table C1-8 Arithmetic instructions to compute addressing modes

Addressing
Form

Offset

Immediate Register

Extended Register

Base register (no
offset)

Base plus offset

MOV Xd|SP, base -

ADD Xd|SP, base, #imm
or
SUB Xd|SP, base, #imm

ADD <Xd|SP>, base, Xm{,LSL#imm}

ADD <Xd|SP>, base, Wm, (S|U)XT(W|H|B|) {#imm}

Pre-indexed

Post-indexed

Literal
(PC-relative)

ADR Xd, Tabel -

Note

. To calculate a base plus immediate offset the ADD instructions defined in Arithmetic (immediate) on

page C3-147 accept an unsigned 12-bit immediate offset, with an optional left shift by 12. This means that a
single ADD instruction cannot support the full range of byte offsets available to a single register Load/Store
with a scaled 12-bit immediate offset. For example, a quadword LDR effectively has a 16-bit byte offset. To
calculate an address with a byte offset that requires more than 12 bits it is necessary to use two ADD
instructions. The following example shows this:

ADD Xd, base, #(imm & OxFFF)
ADD Xd, Xd, #(imm>>12), LSL #12

To calculate a base plus extended register offset, the ADD instructions defined in Arithmetic (extended register)
on page C3-152 provide a superset of the addressing mode that also supports sign-extension or
zero-extension of a byte or halfword value with any shift amount between 0 and 4, for example:

ADD Xd, base, Wm, SXTW #3 // Xd = base + (SignExtend(Wm) LSL 3)
ADD Xd, base, Wm, UXTH #4 // Xd = base + (ZeroExtend(Wm<15:0>) LSL 4)

If the same extended register offset is used by more than one Load/Store instruction, then, depending on the
implementation, it might be more efficient to calculate the extended and scaled intermediate result just once,
and then re-use it as a simple register offset. The extend and scale calculation can be performed using the
SBFIZ and UBFIZ bitfield instructions defined in Bitfield move on page C3-149, for example:

SBFIZ Xd, Xm, #3, #32 //Xd = “Wm, SXTW #3”
UBFIZ Xd, Xm, #4, #16 //Xd = “Wm, UXTH #4”

C1-124

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

C1 The A64 Instruction Set
C1.4 Instruction aliases

Cl4 Instruction aliases

Some instructions have an associated architecture alias that is used for disassembly of the encoding when the
associated conditions are met. Architecture alias instructions are included in the alphabetic lists of instruction types
and clearly presented as an alias form in descriptions for the individual instructions.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C1-125
ID121714 Non-Confidential - Beta

C1 The A64 Instruction Set
C1.4 Instruction aliases

C1-126 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Chapter C2
About the A64 Instruction Descriptions

This chapter describes the instruction descriptions contained in Chapter C6 A64 Base Instruction Descriptions and
Chapter C7 A64 Advanced SIMD and Floating-point Instruction Descriptions.

It contains the following section:

Understanding the A64 instruction descriptions on page C2-128.

ARM DDI 0487A.e

Copyright © 2013, 2014 ARM Limited. All rights reserved.
ID121714

Cc2-127
Non-Confidential - Beta

C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

c2.1 Understanding the A64 instruction descriptions
Each instruction description in Chapter C6 and Chapter C7 has the following content:
1. Atitle.
2. An introduction to the instruction.
3. The instruction encoding or encodings.
4. Any alias conditions.
5. A list of the assembler symbols for the instruction.
6. Pseudocode describing how the instruction operates.
7. Notes, if applicable.
The following sections describe each of these.

c2.11 The title
The title of an instruction description includes the base mnemonic for the instruction.
If different forms of an instruction use the same base mnemonic, each form has its own description. In this case, the
title is the mnemonic followed by a short description of the instruction form in parentheses. This is most often used
when an operand is an immediate value in one instruction form, but is a register in another form.
For example, in Chapter C6 there are the following titles for different forms of the ADD instruction:
. ADD (extended register) on page C6-402.
. ADD (immediate) on page C6-404.
. ADD (shifted register) on page C6-406.

C2.1.2 An introduction to the instruction
This briefly describes the function of the instruction. The introduction is not a complete description of the
instruction, and it is not definitive. If there is any conflict between it and the more detailed information that follows
it, the more detailed information takes priority.

c2.1.3 The instruction encoding or encodings
This shows the instruction encoding diagram, or if the instruction has more than one encoding, shows all of the
encoding diagrams. Each diagram has a subheading.
For example, for load and store instructions, the subheadings might be:
. Post-index.
. Pre-index.
. Unsigned offset.
Each diagram numbers the bits from 31 to 0. The diagram for an instruction at address A shows, from left to right,
the bytes at addresses A+3, A+2, A+1, and A.
There might be variants of an encoding, if the assembler syntax prototype differs depending on the value in one or
more of the encoding fields. In this case, each variant has a subheading that describes the variant and shows the
distinguishing field value or values in parentheses. For example, in Chapter C6 there are the following subheadings
for variants of the ADC instruction encoding:
. 32-bit variant (sf = 0).
. 64-bit variant (sf = 1).
The assembler syntax prototype for an encoding or variant of an encoding shows how to form a complete assembler
source code instruction that assembles to the encoding. Unless otherwise stated, the prototype is also the preferred
syntax for a disassembler to disassemble the encoding to. Disassemblers are permitted to omit optional symbols that
represent the default value of a field or set of fields, to produce more readable disassembled code, provided that the
output re-assembles to the same encoding.

C2-128 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Each encoding diagram, and its associated assembler syntax prototypes, is followed by encoding-specific
pseudocode that translates the fields of that encoding into inputs for the encoding-independent pseudocode that
describes the operation of the instruction. See Pseudocode describing how the instruction operates on page C2-130.

C2.14 Any alias conditions, if applicable

This is an optional part of an instruction description. If included, it describes the set of conditions for which an
alternative mnemonic and its associated assembler syntax prototypes are preferred for disassembly by a
disassembler. It includes a link to the alias instruction description that defines the alternative syntax. The alias
syntax and the original syntax can be used interchangeably in the assembler source code.

ARM recommends that if a disassembler outputs the alias syntax, it consistently outputs the alias syntax.

c2.15 A list of the assembler symbols for the instruction

The Assembler symbols subsection of the instruction description contains a list of the symbols that the assembler
syntax prototype or prototypes use, if any.

In assembler syntax prototypes, the following conventions are used:

<> Angle brackets. Any symbol enclosed by these is a name or a value that the user supplies. For each
symbol, there is a description of what the symbol represents. The description usually also specifies
which encoding field or fields encodes the symbol.

{1 Brace brackets. Any symbols enclosed by these are optional. For each optional symbol, there is a
description of what the symbol represents and how its presence or absence is encoded.

In some assembler syntax prototypes, some brace brackets are mandatory, for example if they
surround a register list. When the use of brace brackets is mandatory, they are separated from other
syntax items by one or more spaces.

This usually precedes a numeric constant. All uses of # are optional in A64 assembler source code.
ARM recommends that disassemblers output the # where the assembler syntax prototype includes it.

+/- This indicates an optional + or - sign. If neither is coded, + is assumed.

Single spaces are used for clarity, to separate syntax items. Where a space is mandatory, the assembler syntax
prototype shows two or more consecutive spaces.

Any characters not shown in this conventions list must be coded exactly as shown in the assembler syntax prototype.
Apart from brace brackets, the characters shown are used as part of a meta-language to define the architectural
assembler syntax for an instruction encoding or alias, but have no architecturally defined significance in the input
to an assembler or in the output from a disassembler.

The following symbol conventions are used:

<Xn> The 64-bit name of a general-purpose register (X0-X30) or the zero register (XZR).

<Wn> The 32-bit name of a general-purpose register (WO0-W30) or the zero register (WZR).
<Xn|SP> The 64-bit name of a general-purpose register (X0-X30) or the current stack pointer (SP).
<Wn |WSP> The 32-bit name of a general-purpose register (WO0-W30) or the current stack pointer (WSP).

<Bn>, <Hn>, <Sn>, <Dn>, <Qn>
The 8, 16, 32, 64 or 128-bit name of a SIMD and floating-point register in a scalar context as
described in section Register names on page C1-118.

<Vn> The name of a SIMD and floating-point register name in a vector context as described in Register
names on page C1-118.

If the description of a symbol specifies that the symbol is a register, the description might also specify that the range
of permitted registers is extended or restricted. It also specifies any differences from the default rules for such fields.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C2-129
Non-Confidential - Beta

C2 About the A64 Instruction Descriptions
C2.1 Understanding the A64 instruction descriptions

Note
Register names on page C1-118 provides the A64 register names.

C2.1.6 Pseudocode describing how the instruction operates
The Operation subsection of the instruction description contains this pseudocode.
It is encoding-independent pseudocode that provides a precise description of what the instruction does.

Note

For a description of ARM pseudocode, see Appendix J9 ARM Pseudocode Definition. This appendix also describes
the execution model for an instruction.

c2.1.7 Notes, if applicable

If applicable, other notes about the instruction appear under additional subheadings.

C2-130 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

Chapter C3

A64 Instruction Set Overview

This chapter provides an overview of the A64 instruction set. It contains the following sections:

.

Branches, Exception generating, and System instructions on page C3-132.
Loads and stores on page C3-136.

Data processing - immediate on page C3-147.

Data processing - register on page C3-152.

Data processing - SIMD and floating-point on page C3-159.

For a structured breakdown of instruction groups by encoding, see Chapter C4 A64 Instruction Set Encoding.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

C3-131

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

C3.1 Branches, Exception generating, and System instructions

This section describes the branch, exception generating, and system instructions. It contains the following

subsections:

. Conditional branch.

. Unconditional branch (immediate).

. Unconditional branch (register) on page C3-133.

. Exception generation and return on page C3-133.

. System register instructions on page C3-134.

. System instructions on page C3-134.

. Hint instructions on page C3-135.

. Barriers and CLREX instructions on page C3-135.

For information about the encoding structure of the instructions in this instruction group, see Branches, exception

generating and system instructions on page C4-181.

Note

Software must:

. Use only BLR or BL to perform a nested subroutine call when that subroutine is expected to return to the
immediately following instruction, that is, the instruction with the address of the BLR or BL instruction
incremented by four.

. Use only RET to perform a subroutine return, when that subroutine is expected to have been entered by a BL
or BLR instruction.

. Use only B, BR, or the instructions listed in Table C3-1 to perform a control transfer that is not a subroutine
call or subroutine return described in this Note.

C3.11 Conditional branch

Conditional branches change the flow of execution depending on the current state of the condition flags or the value

in a general-purpose register. See Table C1-1 on page C1-118 for a list of the condition codes that can be used for

cond.

Table C3-1 shows the Conditional branch instructions.

Table C3-1 Conditional branch instructions

Mnemonic Instruction Branch offset range from the PC See

B.cond Branch conditionally +1MB B.cond on page C6-429

(BNZ Compare and branch if nonzero +1MB CBNZ on page C6-443

(BZ Compare and branch if zero +1MB CBZ on page C6-444

TBNZ Test bit and branch if nonzero +32KB TBNZ on page C6-781

TBZ Test bit and branch if zero +32KB TBZ on page C6-782
C3.1.2 Unconditional branch (immediate)

Unconditional branch (immediate) instructions change the flow of execution unconditionally by adding an

immediate offset with a range of £128MB to the value of the program counter that fetched the instruction. The BL

instruction also writes the address of the sequentially following instruction to general-purpose register, X30.
C3-132 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C3.1.3

C3.14

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Table C3-2 shows the Unconditional branch instructions with an immediate branch offset.

Table C3-2 Unconditional branch instructions (immediate)

Immediate branch offset range

Mnemonic Instruction from the PC See
B Branch unconditionally ~ +128MB B on page C6-430
BL Branch with link +128MB BL on page C6-439

Unconditional branch (register)

Unconditional branch (register) instructions change the flow of execution unconditionally by setting the program
counter to the value in a general-purpose register. The BLR instruction also writes the address of the sequentially
following instruction to general-purpose register X30. The RET instruction behaves identically to BR, but provides an
additional hint to the PE that this is a return from a subroutine.Table C3-3 shows Unconditional branch instructions
that jump directly to an address held in a general-purpose register.

Table C3-3 Unconditional branch instructions (register)

Mnemonic Instruction See

BLR Branch with link to register ~ BLR on page C6-440
BR Branch to register BR on page C6-441
RET Return from subroutine RET on page C6-663

Exception generation and return

This section describes the following exceptions:
. Exception generating.

. Exception return on page C3-134.

. Debug state on page C3-134.

Exception generating

Table C3-4 shows the Exception generating instructions.

Table C3-4 Exception generating instructions

Mnemonic Instruction See

BRK Software breakpoint instruction BRK on page C6-442

HLT Halting software breakpoint instruction HLT on page C6-498

HVC Generate exception targeting Exception level 2 HVC on page C6-499

SMC Generate exception targeting Exception level 3 SMC on page C6-686

SvC Generate exception targeting Exception level 1~ SVC on page C6-774
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-133

ID121714

Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Exception return

Table C3-5 shows the Exception return instructions.

Table C3-5 Exception return instructions

Mnemonic Instruction See

ERET Exception return using current ELR and SPSR ERET on page C6-493

Debug state

Table C3-6 shows the Debug state instructions.

Table C3-6 Debug state instructions

Mnemonic Instruction See

DCPS1 Debug switch to Exception level 1~ DCPS1 on page C6-479
DCPS2 Debug switch to Exception level 2 DCPS2 on page C6-480
DCPS3 Debug switch to Exception level 3 DCPS3 on page C6-481
DRPS Debug restore PE state DRPS on page C6-484

C3.1.5 System register instructions

For detailed information about the System register instructions, see Chapter C5 The A64 System Instruction Class.
Table C3-7 shows the System register instructions.

Table C3-7 System register instructions

Mnemonic Instruction See
MRS Move system register to general-purpose register MRS on page C6-628
MSR . Move general-purpose register to system register o MSR (register) on page C6-631
. Move immediate to PE state field . MSR (immediate) on page C6-629
C3.1.6 Systeminstructions

For detailed information about the System instructions, see Chapter C5 The A64 System Instruction Class.

Table C3-8 shows the System instructions.

Table C3-8 System instructions

Mnemonic Instruction See

SYS System instruction SYS on page C6-778

SYSL System instruction with result ~ SYSL on page C6-780

IC Instruction cache maintenance IC on page C6-500 and Table C5-2 on page C5-245
C3-134 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.1 Branches, Exception generating, and System instructions

Table C3-8 System instructions (continued)

Mnemonic Instruction See

DC Data cache maintenance DC on page C6-478 and Table C5-2 on page C5-245
AT Address translation AT on page C6-428 and Table C5-3 on page C5-245
TLBI TLB Invalidate TLBI on page C6-783 and Table C5-4 on page C5-246

C3.1.7 Hint instructions
Table C3-9 shows the Hint instructions.
Table C3-9 Hint instructions

Mnemonic Instruction See
NOP No operation NOP on page C6-643
YIELD Yield hint YIELD on page C6-804
WFE Wait for event WFE on page C6-802
WFI Wait for interrupt ~ WFI on page C6-803
SEV Send event SEV on page C6-682
SEVL Send event local SEVL on page C6-683
HINT Unallocated hint HINT on page C6-496

C3.1.8 Barriers and CLREX instructions

Table C3-10 shows the barrier and CLREX instructions.

Table C3-10 Barriers and CLREX instructions

Mnemonic Instruction See

CLREX Clear exclusive monitor CLREX on page C6-451
DSB Data synchronization barrier DSB on page C6-485
DMB Data memory barrier DMB on page C6-482
ISB Instruction synchronization barrier 1SB on page C6-501

For more information about the barriers, see Memory barriers on page B2-85.

For information about the allocated values for the data barriers, see:
. DMB on page C6-482.
. DSB on page C6-485.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

C3-135

C3 A64 Instruction Set
C3.2 Loads and stores

Overview

C3.2 Loads and stores

C3.2.1 Load

This section describes the Load/Store instructions. It contains the following subsections:
. Load/Store register.

. Load/Store register (unscaled offset) on page C3-137.

. Load/Store Pair on page C3-138.

. Load/Store Non-temporal Pair on page C3-139.

. Load/Store Unprivileged on page C3-139.

. Load-Exclusive/Store-Exclusive on page C3-140.

. Load-Acquire/Store-Release on page C3-141.

. Load/Store scalar SIMD and floating-point on page C3-141.
. Load/Store Vector on page C3-144.

. Prefetch memory on page C3-145.

Apart from Load-Exclusive, Store-Exclusive, Load-Acquire, and Store-Release, addresses can have any alignment
unless strict alignment checking is enabled, that is if SCTLR_ELXx.A == 1.

The additional control bits SCTLR_ELX.SA and SCTLR_EL1.SAQ control whether the stack pointer must be
quadword aligned when used as a base register. See Stack pointer alignment checking on page D1-1510. Using a
misaligned stack pointer generates a Stack Alignment exception.

For information about the encoding structure of the instructions in this instruction group, see Loads and stores on
page C4-184.

Note

In some cases, Load/Store instructions can lead to CONSTRAINED UNPREDICTABLE behavior. See Constraints on
AArch64 state UNPREDICTABLE behaviors on page J1-5400.

/Store register

The Load/Store register instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
. Base plus a 64-bit register offset, optionally scaled.

. Base plus a 32-bit extended register offset, optionally scaled.

. Pre-indexed by an unscaled 9-bit signed immediate offset.

. Post-indexed by an unscaled 9-bit signed immediate offset.

. PC-relative literal for loads of 32 bits or more.

See also Load/Store addressing modes on page C1-122.

If a Load instruction specifies writeback and the register being loaded is also the base register, then one of the
following behaviors occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs the load using the specified addressing mode and the base register becomes

UNKNOWN. In addition, if an exception occurs during the execution of such an instruction, the base address
might be corrupted so that the instruction cannot be repeated.

If a Store instruction performs a writeback and the register that is stored is also the base register, then one of the
following behaviors occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
C3-136 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.2 Loads and stores

. The instruction performs the store to the designated register using the specified addressing mode, but the
value stored is UNKNOWN.

Table C3-11 shows the Load/Store Register instructions.

Table C3-11 Load/Store register instructions

Mnemonic Instruction
LDR Load register (register offset) LDR (register) on page C6-538
Load register (immediate offset) LDR (immediate) on page C6-532
Load register (PC-relative literal) LDR (literal) on page C6-536
LDRB Load byte (register offset) LDRB (register) on page C6-544
Load byte (immediate offset) LDRB (immediate) on page C6-541
LDRSB Load signed byte (register offset) LDRSB (register) on page C6-556
Load signed byte (immediate offset) LDRSB (immediate) on page C6-553
LDRH Load halfword (register offset) LDRH (register) on page C6-550
Load halfword (immediate offset) LDRH (immediate) on page C6-547
LDRSH Load signed halfword (register offset) LDRSH (register) on page C6-562
Load signed halfword (immediate offset) LDRSH (immediate) on page C6-559
LDRSW Load signed word (register offset) LDRSW (register) on page C6-569
Load signed word (immediate offset) LDRSW (immediate) on page C6-565
Load signed word (PC-relative literal) LDRSW (literal) on page C6-568
STR Store register (register offset) STR (register) on page C6-722
Store register (immediate offset) STR (immediate) on page C6-719
STRB Store byte (register offset) STRB (register) on page C6-728
Store byte (immediate offset) STRB (immediate) on page C6-725
STRH Store halfword (register offset) STRH (register) on page C6-734
Store halfword (immediate offset) STRH (immediate) on page C6-731
C3.2.2 Load/Store register (unscaled offset)

The Load/Store register instructions with an unscaled offset support only one addressing mode:

. Base plus an unscaled 9-bit signed immediate offset.

See Load/Store addressing modes on page C1-122.

The Load/Store register (unscaled offset) instructions are required to disambiguate this instruction class from the
Load/Store register instruction forms that support an addressing mode of base plus a scaled, unsigned 12-bit
immediate offset, because that can represent some offset values in the same range.

The ambiguous immediate offsets are byte offsets that are both:
. In the range 0-255, inclusive.
. Naturally aligned to the access size.

Other byte offsets in the range -256 to 255 inclusive are unambiguous. An assembler program translating a
Load/Store instruction, for example LDR, is required to encode an unambiguous offset using the unscaled 9-bit offset
form, and to encode an ambiguous offset using the scaled 12-bit offset form. A programmer might force the
generation of the unscaled 9-bit form by using one of the mnemonics in Table C3-12 on page C3-138. ARM
recommends that a disassembler outputs all unscaled 9-bit offset forms using one of these mnemonics, but
unambiguous offsets can be output using a Load/Store single register mnemonic, for example, LDR.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.

Non-Confidential - Beta

C3-137

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-12 shows the Load/Store register instructions with an unscaled offset.

Table C3-12 Load/Store register (unscaled offset) instructions

Mnemonic Instruction See
LDUR Load register (unscaled offset) LDUR on page C6-584
LDURB Load byte (unscaled offset) LDURB on page C6-586
LDURSB Load signed byte (unscaled offset) LDURSB on page C6-590
LDURH Load halfword (unscaled offset) LDURH on page C6-588
LDURSH Load signed halfword (unscaled offset) LDURSH on page C6-592
LDURSW Load signed word (unscaled offset) LDURSW on page C6-594
STUR Store register (unscaled offset) STUR on page C6-743
STURB Store byte (unscaled offset) STURB on page C6-745
STURH Store halfword (unscaled offset) STURH on page C6-747
C3.2.3 Load/Store Pair

The Load/Store Pair instructions support the following addressing modes:

. Base plus a scaled 7-bit signed immediate offset.

. Pre-indexed by a scaled 7-bit signed immediate offset.

. Post-indexed by a scaled 7-hit signed immediate offset.

See also Load/Store addressing modes on page C1-122.

If a Load Pair instruction specifies the same register for the two register that are being loaded, then one of the
following behaviors occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the loads using the specified addressing mode and the register that is loaded takes

an UNKNOWN value.

If a Load Pair instruction specifies writeback and one of the registers being loaded is also the base register, then one
of the following behaviors occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all of the loads using the specified addressing mode, and the base register becomes

UNKNOWN. In addition, if an exception occurs during the instruction, the base address might be corrupted so
that the instruction cannot be repeated.

If a Store Pair instruction performs a writeback and one of the registers being stored is also the base register, then
one of the following behaviors occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the stores of the registers indicated by the specified addressing mode, but the

value stored for the base register is UNKNOWN.

C3-138 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-13 shows the Load/Store Pair instructions.

Table C3-13 Load/Store Pair instructions

Mnemonic Instruction See

LDP Load Pair LDP on page C6-525
LDPSW Load Pair signed words ~ LDPSW on page C6-529
STP Store Pair STP on page C6-715

C3.24 Load/Store Non-temporal Pair
The Load/Store Non-temporal Pair instructions support only one addressing mode:
. Base plus a scaled 7-bit signed immediate offset.
See Load/Store addressing modes on page C1-122.

The Load/Store Non-temporal Pair instructions provide a hint to the memory system that an access is hon-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition there is a special exception to the normal memory ordering rules. If an address dependency exists
between two memory reads, and a Load Non-temporal Pair instruction generated the second read, then in the
absence of any other barrier mechanism to achieve order, the memory accesses can be observed in any order by the
other observers within the shareability domain of the memory addresses being accessed.

If a Load Non-Temporal Pair instruction specifies the same register for the two registers that are being loaded, then
one of the following can occur:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the loads using the specified addressing mode and the register that is loaded takes

an UNKNOWN value.

Table C3-14 shows the Load/Store Non-temporal Pair instructions.

Table C3-14 Load/Store Non-temporal Pair instructions

Mnemonic Instruction See
LDNP Load Non-temporal Pair ~ LDNP on page C6-523
STNP Store Non-temporal Pair ~ STNP on page C6-713

C3.25 Load/Store Unprivileged
The Load/Store Unprivileged instructions support only one addressing mode:
. Base plus an unscaled 9-bit signed immediate offset.
See Load/Store addressing modes on page C1-122.

The Load/Store Unprivileged instructions can be used when the PE is at EL1 to perform unprivileged memory
accesses. If the PE is executing in any other Exception level, then a normal memory access for that level is
performed.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-139
ID121714 Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-15 shows the Load/Store Unprivileged instructions.

Table C3-15 Load-Store Unprivileged instructions

Mnemonic Instruction See

LDTR Load Unprivileged register LDTR on page C6-572
LDTRB Load Unprivileged byte LDTRB on page C6-574
LDTRSB Load Unprivileged signed byte LDTRSB on page C6-578
LDTRH Load Unprivileged halfword LDTRH on page C6-576
LDTRSH Load Unprivileged signed halfword ~ LDTRSH on page C6-580
LDTRSW Load Unprivileged signed word LDTRSW on page C6-582
STTR Store Unprivileged register STTR on page C6-737
STTRB Store Unprivileged byte STTRB on page C6-739
STTRH Store Unprivileged halfword STTRH on page C6-741

C3.2.6 Load-Exclusive/Store-Exclusive
The Load-Exclusive/Store-Exclusive instructions support only one addressing mode:
. Base register with no offset.
See Load/Store addressing modes on page C1-122.
The Load-Exclusive instructions mark the physical address being accessed as an exclusive access. This exclusive
access mark is checked by the Store-Exclusive instruction, permitting the construction of atomic read-modify-write
operations on shared memory variables, semaphores, mutexes, and spinlocks. See Synchronization and semaphores
on page B2-103.
Natural alignment is required and an unaligned address generates an Alignment fault. Memory accesses generated
by Load-Exclusive pair or Store-Exclusive pair instructions must be aligned to the size of the pair. When a
Store-Exclusive pair succeeds, it causes a single-copy atomic update of the entire memory location.
Table C3-16 shows the Load-Exclusive/Store-Exclusive instructions.
Table C3-16 Load-Exclusive/Store-Exclusive instructions
Mnemonic Instruction See
LDXR Load Exclusive register LDXR on page C6-599
LDXRB Load Exclusive byte LDXRB on page C6-602
LDXRH Load Exclusive halfword ~ LDXRH on page C6-605
LDXP Load Exclusive pair LDXP on page C6-596
STXR Store Exclusive register STXR on page C6-752
STXRB Store Exclusive byte STXRB on page C6-755
STXRH Store Exclusive halfword ~ STXRH on page C6-758
STXP Store Exclusive pair STXP on page C6-749
C3-140 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C3 A64 Instruction Set Overview
C3.2 Loads and stores

C3.2.7 Load-Acquire/Store-Release

The Load-Acquire/Store-Release instructions support only one addressing mode:
. Base register with no offset.
See Load/Store addressing modes on page C1-122.

The Load-Acquire/Store-Release instructions can remove the requirement to use the explicit DMB memory barrier
instruction. For more information about the ordering of Load-Acquire/Store-Release, see Load-Acquire,
Store-Release on page B2-88.

Table C3-17 shows the Non-exclusive Load-Acquire/Store-Release instructions.

Table C3-17 Non-exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See

LDAR Load-Acquire register LDAR on page C6-502
LDARB Load-Acquire byte LDARB on page C6-505
LDARH Load-Acquire halfword LDARH on page C6-508
STLR Store-Release register STLR on page C6-692
STLRB Store-Release byte STLRB on page C6-695
STLRH Store-Release halfword STLRH on page C6-698

Table C3-18 shows the Exclusive Load-Acquire/Store-Release instructions.

Table C3-18 Exclusive Load-Acquire and Store-Release instructions

Mnemonic Instruction See
LDAXR Load-Acquire Exclusive register LDAXR on page C6-514
LDAXRB Load-Acquire Exclusive byte LDAXRB on page C6-517
LDAXRH Load-Acquire Exclusive halfword LDAXRH on page C6-520
LDAXP Load-Acquire Exclusive pair LDAXP on page C6-511
STLXR Store-Release Exclusive register STLXR on page C6-704
STLXRB Store-Release Exclusive byte STLXRB on page C6-707
STLXRH Store-Release Exclusive halfword ~ STLXRH on page C6-710
STLXP Store-Release Exclusive pair STLXP on page C6-701
C3.2.8 Load/Store scalar SIMD and floating-point

The Load/Store scalar SIMD and floating-point instructions operate on scalar values in the SIMD and floating-point
register file as described in SIMD and floating-point scalar register names on page C1-120. The memory addressing
modes available, described in Load/Store addressing modes on page C1-122, are identical to the general-purpose
register Load/Store instructions, and like those instructions permit arbitrary address alignment unless strict
alignment checking is enabled. However, unlike the Load/Store instructions that transfer general-purpose registers,
Load/Store scalar SIMD and floating-point instructions make no guarantee of atomicity, even when the address is
naturally aligned to the size of the data.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-141
Non-Confidential - Beta

C3 A64 Instruction Set
C3.2 Loads and stores

Overview

Load/Store scalar SIMD and floating-point register

The Load/Store scalar SIMD and floating-point register instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus unscaled 9-bit signed immediate offset.
. Base plus 64-bit register offset, optionally scaled.

. Base plus 32-bit extended register offset, optionally scaled.

. Pre-indexed by an unscaled 9-bit signed immediate offset.

. Post-indexed by an unscaled 9-bit signed immediate offset.

. PC-relative literal for loads of 32 bits or more.

For more information on the addressing modes, see Load/Store addressing modes on page C1-122.

Note

The unscaled 9-bit signed immediate offset address mode requires its own instruction form, see Load/Store scalar
SIMD and floating-point register (unscaled offset).

Table C3-19 shows the Load/Store instructions for a single SIMD and floating-point register.

Table C3-19 Load/Store single SIMD and floating-point register instructions

Mnemonic Inst

ruction See

LDR i

Load scalar SIMD&FP register (register offset) . LDR (register, SIMD&FP) on page C7-1113
Load scalar SIMD&FP register (immediate offset) . LDR (immediate, SIMD&FP) on page C7-1107
Load scalar SIMD &FP register (PC-relative literal) LDR (literal, SIMD&FP) on page C7-1111

STR .

Store scalar SIMD &FP register (register offset) . STR (register, SIMD&FP) on page C7-1362
Store scalar SIMD &FP register (immediate offset) . STR (immediate, SIMD&FP) on page C7-1358

Load/Store scalar SIMD and floating-point register (unscaled offset)

The Load /Store scalar SIMD and floating-point register instructions support only one addressing mode:
. Base plus an unscaled 9-bit signed immediate offset.

See also Load/Store addressing modes on page C1-122.

The Load/Store scalar SIMD and floating-point register (unscaled offset) instructions are required to disambiguate
this instruction class from the Load/Store single SIMD and floating-point instruction forms that support an
addressing mode of base plus a scaled, unsigned 12-bit immediate offset. This is similar to the Load/Store register
(unscaled offset) instructions, that disambiguate this instruction class from the Load/Store register instruction, see
Load/Store register (unscaled offset) on page C3-137.

Table C3-20 shows the Load/Store SIMD and floating-point register instructions with an unscaled offset.

Table C3-20 Load/Store SIMD and floating-point register instructions

Mnemonic Instruction See

LDUR Load scalar SIMD&FP register (unscaled offset) LDUR (SIMD&FP) on page C7-1116

STUR Store scalar SIMD&FP register (unscaled offset) STUR (SIMD&FP) on page C7-1365

C3-142

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Load/Store SIMD and Floating-point register pair

The Load/Store SIMD and floating-point register pair instructions support the following addressing modes:

. Base plus a scaled 7-bit signed immediate offset.
. Pre-indexed by a scaled 7-bit signed immediate offset.
. Post-indexed by a scaled 7-bit signed immediate offset.

See also Load/Store addressing modes on page C1-122.

If a Load pair instruction specifies the same register for the two registers that are being loaded, then one of the
following occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all of the loads using the specified addressing mode and the register being loaded

takes an UNKNOWN value.

Table C3-21 shows the Load/Store SIMD and floating-point register pair instructions.

Table C3-21 Load/Store SIMD and floating-point register pair instructions

Mnemonic Instruction See
LDP Load pair of scalar SIMD&FP registers LDP (SIMD&FP) on page C7-1104
STP Store pair of scalar SIMD&FP registers ~ STP (SIMD&FP) on page C7-1355

Load/Store SIMD and Floating-point Non-temporal pair

The Load/Store SIMD and Floating-point Non-temporal pair instructions support only one addressing mode:
. Base plus a scaled 7-bit signed immediate offset.

See also Load/Store addressing modes on page C1-122.

The Load/Store Non-temporal pair instructions provide a hint to the memory system that an access is non-temporal
or streaming, and unlikely to be repeated in the near future. This means that data caching is not required. However,
depending on the memory type, the instructions might permit memory reads to be preloaded and memory writes to
be gathered to accelerate bulk memory transfers.

In addition there is a special exception to the normal memory ordering rules. If an address dependency exists
between two memory reads, and a Load non-temporal pair instruction generated the second read, then in the absence
of any other barrier mechanism to achieve order, those memory accesses can be observed in any order by the other
observers within the shareability domain of the memory addresses being accessed.

If a Load Non-temporal pair instruction specifies the same register for the two registers that are being loaded, then
one of the following occurs:

. The instruction is treated as UNDEFINED.
. The instruction is treated as a NOP.
. The instruction performs all the loads using the specified addressing mode and the register that is loaded takes

an UNKNOWN value.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-143
ID121714 Non-Confidential - Beta

C3 A64 Instruction Set Overview

C3.2 Loads and stores

Table C3-22 shows the Load/Store SIMD and floating-point Non-temporal pair instructions.

Table C3-22 Load/Store SIMD and floating-point Non-temporal pair instructions

Mnemonic Instruction See
LDNP Load pair of scalar SIMD&FP registers ~ LDNP (SIMD&FP) on page C7-1102
STNP Store pair of scalar SIMD&FP registers ~ STNP (SIMD&FP) on page C7-1353
C3.2.9 Load/Store Vector
The Vector Load/Store structure instructions support the following addressing modes:
. Base register only.
. Post-indexed by a 64-bit register.
. Post-indexed by an immediate, equal to the number of bytes transferred.
Load/Store vector instructions, like other Load/Store instructions, allow any address alignment, unless strict
alignment checking is enabled. If strict alignment checking is enabled, then alignment checking to the size of the
element is performed. However, unlike the Load/Store instructions that transfer general-purpose registers, the
Load/Store vector instructions do not guarantee atomicity, even when the address is naturally aligned to the size of
the element.
Load/Store structures
Table C3-23 shows the Load/Store structure instructions. A post-increment immediate offset, if present, must be 8,
16, 24, 32, 48, or 64, depending on the number of elements transferred.
Table C3-23 Load/Store multiple structures instructions
Mnemonic Instruction
LD1 Load single 1-element structure to one lane of one register LD1 (single structure) on
page C7-1066
Load multiple 1-element structures to one register or to two, LD1 (multiple structures) on
three or four consecutive registers page C7-1062
LD2 Load single 2-element structure to one lane of two consecutive LD2 (single structure) on
registers page C7-1075
Load multiple 2-element structures to two consecutive registers LD2 (multiple structures) on
page C7-1072
LD3 Load single 3-element structure to one lane of three LD3 (single structure) on
consecutive registers page C7-1085
Load multiple 3-element structures to three consecutive LD3 (multiple structures) on
registers page C7-1082
LD4 Load single 4-element structure to one lane of four consecutive LD4 (single structure) on
registers page C7-1095
Load multiple 4-element structures to four consecutive LD4 (multiple structures) on
registers page C7-1092
ST1 Store single 1-element structure from one lane of one register ST1 (single structure) on
page C7-1329
Store multiple 1-element structures from one register, or from ST1 (multiple structures) on
two, three or four consecutive registers page C7-1325
C3-144 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C3 A64 Instruction Set Overview
C3.2 Loads and stores

Table C3-23 Load/Store multiple structures instructions (continued)

Mnemonic Instruction
ST2 . Store single 2-element structure from one lane of two ST2 (single structure) on
consecutive registers page C7-1335
. Store multiple 2-element structures from two consecutive ST2 (multiple structures) on
registers page C7-1332
ST3 . Store single 3-element structure from one lane of three ST3 (single structure) on
consecutive registers page C7-1342
. Store multiple 3-element structures from three consecutive ST3 (multiple structures) on
registers page C7-1339
ST4 . Store single 4-element structure from one lane of four ST4 (single structure) on
consecutive registers page C7-1349
. Store multiple 4-element structures from four consecutive ST4 (multiple structures) on
registers page C7-1346
Load single structure and replicate
Table C3-24 shows the Load single structure and replicate instructions. A post-increment immediate offset, if
present, must be 1, 2, 3, 4, 6, 8, 12, 16, 24, or 32, depending on the number of elements transferred.
Table C3-24 Load single structure and replicate instructions
Mnemonic Instruction See
LDIR Load single 1-element structure and replicate to all lanes of one register LD1R on page C7-1069
LD2R Load single 2-element structure and replicate to all lanes of two registers LD2R on page C7-1079
LD3R Load single 3-element structure and replicate to all lanes of three registers LD3R on page C7-1089
LD4R Load single 4-element structure and replicate to all lanes of four registers ~ LD4R on page C7-1099
C3.2.10 Prefetch memory

The Prefetch memory instructions support the following addressing modes:

. Base plus a scaled 12-bit unsigned immediate offset or base plus an unscaled 9-bit signed immediate offset.
. Base plus a 64-bit register offset. This can be optionally scaled by 8-bits, for example LSL#3.

. Base plus a 32-bit extended register offset. This can be optionally scaled by 8-bits.

. PC-relative literal.

The prefetch memory instructions signal to the memory system that memory accesses from a specified address are
likely to occur in the near future. The memory system can respond by taking actions that are expected to speed up
the memory access when they do occur, such as pre-loading the specified address into one or more caches. Because
these signals are only hints, it is valid for the PE to treat any or all prefetch instructions as a NOP.

Because they are hints to the memory system, the operation of a PRFM instruction cannot cause a synchronous
exception. However, a memory operation performed as a result of one of these memory system hints might in
exceptional cases trigger an asynchronous event, and thereby influence the execution of the PE. An example of an
asynchronous event that might be triggered is a SError interrupt.

A PRFM instruction can only have an effect on software visible structures, such as caches and translation lookaside
buffers associated with memory locations that can be accessed by reads, writes, or execution as defined in the
translation regime of the current Exception level.

A PRFM instruction is guaranteed not to access Device memory.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

C3-145

C3 A64 Instruction Set
C3.2 Loads and stores

Overview

A PRFM instruction using a PLI hint must not result in any access that could not be performed by the PE speculatively
fetching an instruction. Therefore, if all associated MMUs are disabled, a PLI hint cannot access any memory
location that cannot be accessed by instruction fetches.

The PRFM instructions require an additional <prfop> operand to be specified, which must be one of the following:
PLDL1KEEP, PLDL1STRM, PLDL2KEEP, PLDL2STRM, PLDL3KEEP, PLDL3STRM
PSTL1KEEP, PSTL1STRM, PSTL2KEEP, PSTL2STRM, PSTL3KEEP, PSTL3STRM
PLIL1KEEP, PLIL1STRM, PLIL2KEEP, PLIL2STRM, PLIL3KEEP, PLIL3STRM

<prfop> is defined as <type><target><policy>.

Here:
<type> Is one of:
PLD Prefetch for load.
PST Prefetch for store.
PLI Preload instructions.
<target> Is one of:
L1 Level 1 cache.
L2 Level 2 cache.
L3 Level 3 cache.
<policy> Is one of:
KEEP Retained or temporal prefetch, allocated in the cache normally.
STRM Streaming or non-temporal prefetch, for data that is used only once.

PRFUM explicitly uses the unscaled 9-bit signed immediate offset addressing mode, as described in Load/Store
register (unscaled offset) on page C3-137.

Table C3-25 shows the Prefetch memory instructions.

Table C3-25 Prefetch memory instructions

Mnemonic Instruction See

PRFM . Prefetch memory (register offset) . PRFM (register) on page C6-655
. Prefetch memory (immediate offset) PRFM (immediate) on page C6-650
. Prefetch memory (PC-relative offset) PRFM (literal) on page C6-653

PRFUM Prefetch memory (unscaled offset) PRFUM on page C6-658

C3-146

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.3 Data processing - immediate

This section describes the instruction groups for data processing with immediate operands. It contains the following
subsections:

. Arithmetic (immediate).

. Logical (immediate).

. Move (wide immediate) on page C3-148.

. Move (immediate) on page C3-148.

. PC-relative address calculation on page C3-149.
. Bitfield move on page C3-149.

. Bitfield insert and extract on page C3-150

. Extract register on page C3-150.

. Shift (immediate) on page C3-150.

. Sign-extend and Zero-extend on page C3-150.

For information about the encoding structure of the instructions in this instruction group, see Data processing -
immediate on page C4-201.

C3.3.1 Arithmetic (immediate)

The Arithmetic (immediate) instructions accept a 12-bit unsigned immediate value, optionally shifted left by 12 bits.

The Arithmetic (immediate) instructions that do not set condition flags can read from and write to the current stack
pointer. The flag setting instructions can read from the stack pointer, but they cannot write to it.

Table C3-26 shows the Arithmetic instructions with an immediate offset.

Table C3-26 Arithmetic instructions with an immediate

Mnemonic Instruction See

ADD Add ADD (immediate) on page C6-404
ADDS Add and set flags ADDS (immediate) on page C6-411
SUB Subtract SUB (immediate) on page C6-763
SUBS Subtract and set flags ~ SUBS (immediate) on page C6-770
cvP Compare CMP (immediate) on page C6-461
CMN Compare negative CMN (immediate) on page C6-456

C3.3.2 Logical (immediate)

The Logical (immediate) instructions accept a bitmask immediate value that is a 32-bit pattern or a 64-bit pattern
viewed as a vector of identical elements of size e = 2, 4, 8, 16, 32 or, 64 bits. Each element contains the same
sub-pattern, that is a single run of 1 to (e - 1) nonzero bits from bit 0 followed by zero bits, then rotated by 0 to (e -
1) bits. This mechanism can generate 5334 unique 64-bit patterns as 2667 pairs of pattern and their bitwise inverse.

Note
Values that consist of only zeros or only ones cannot be described in this way.

The Logical (immediate) instructions that do not set the condition flags can write to the current stack pointer, for
example to align the stack pointer in a function prologue.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-147
Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

Note

Apart from ANDS, and its TST alias, Logical (immediate) instructions do not set the condition flags. However, the final
results of a bitwise operation can be tested by a (Bz, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-27 shows the Logical immediate instructions.

Table C3-27 Logical immediate instructions

Mnemonic Instruction See

AND Bitwise AND AND (immediate) on page C6-417
ANDS Bitwise AND and set flags ~ ANDS (immediate) on page C6-421
EOR Bitwise exclusive OR EOR (immediate) on page C6-489
ORR Bitwise inclusive OR ORR (immediate) on page C6-646
TST Test bits TST (immediate) on page C6-785

C3.3.3 Move (wide immediate)

The Move (wide immediate) instructions insert a 16-bit immediate, or inverted immediate, into a 16-bit aligned
position in the destination register. The value of the other bits in the destination register depends on the variant used.
The optional shift amount can be any multiple of 16 that is smaller than the register size.

Table C3-28 shows the Move (wide immediate) instructions.

Table C3-28 Move (wide immediate) instructions

Mnemonic Instruction See

MOVZ Move wide with zero MOVZ on page C6-626
MOVN Move wide with NOT =~ MOVN on page C6-624
MOVK Move wide with keep MOVK on page C6-622

C3.34 Move (immediate)

The Move (immediate) instructions are aliases for a single MOVZ, MOVN, or ORR (immediate with zero register),
instruction to load an immediate value into the destination register. An assembler must permit a signed or unsigned
immediate, as long as its binary representation can be generated using one of these instructions, and an assembler
error results if the immediate cannot be generated in this way. On disassembly it is unspecified whether the
immediate is output as a signed or an unsigned value.

If there is a choice between the MOvVZ, MOVN, and ORR instruction to encode the immediate, then an assembler must
prefer MOVZ to MOVN, and MOVZ or MOVN to ORR, to ensure reversability. A disassembler must output ORR (immediate with
zero register) MOvVZ, and MOVN, as a MOV mnemonic except that the underlying instruction must be used when:

. ORR has an immediate that can be generated by a MOVZ or MOVN instruction.
. A MOWN instruction has an immediate that can be encoded by MOvzZ.
. MOVZ #0 or MOVN #0 have a shift amount other than LSL #0.

C3-148 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

Table C3-29 shows the Move (immediate) instructions.

Table C3-29 Move (immediate) instructions

Mnemonic Instruction See
MOV . Move (inverted wide immediate) MOV (inverted wide immediate) on page C6-618
. Move (wide immediate) . MOV (wide immediate) on page C6-619
. Move (bitmask immediate) . MOV (bitmask immediate) on page C6-620
C3.35 PC-relative address calculation

The ADR instruction adds a signed, 21-bit immediate to the value of the program counter that fetched this instruction,
and then writes the result to a general-purpose register. This permits the calculation of any byte address within
+1MB of the current PC.

The ADRP instruction shifts a signed, 21-bit immediate left by 12 bits, adds it to the value of the program counter with
the bottom 12 bits cleared to zero, and then writes the result to a general-purpose register. This permits the
calculation of the address at a 4KB aligned memory region. In conjunction with an ADD (immediate) instruction, or
a Load/Store instruction with a 12-bit immediate offset, this allows for the calculation of, or access to, any address
within 4GB of the current PC.

Note

The term page used in the ADRP description is short-hand for the 4KB memory region, and is not related to the virtual
memory translation granule size.

Table C3-30 shows the instructions used for PC-relative address calculations are as follows:

Table C3-30 PC-relative address calculation instructions

Mnemonic Instruction See
ADRP Compute address of 4KB page at a PC-relative offset ~ ADRP on page C6-416
ADR Compute address of label at a PC-relative offset. ADR on page C6-415

C3.3.6 Bitfield move

The Bitfield move instructions copy a bitfield of constant width from bit 0 in the source register to a constant bit
position in the destination register, or from a constant bit position in the source register to bit 0 in the destination
register. The remaining bits in the destination register are set as follows:

. For BFM the remaining bits are unchanged.
. For UBFM the lower bits, if any, and upper bits, if any, are set to zero.
. For SBFM the lower bits, if any, are set to zero, and the upper bits, if any, are set to a copy of the

most-significant bit in the copied bitfield.

Table C3-31 shows the Bitfield move instructions.

Table C3-31 Bitfield move instructions

Mnemonic Instruction See

BFM Bitfield move BFM on page C6-432

SBFM Signed bitfield move SBFM on page C6-677

UBFM Unsigned bitfield move (32-bit) UBFM on page C6-789
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-149

ID121714

Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

C3.3.7 Bitfield insert and extract

The Bitfield insert and extract instructions are implemented as aliases of the Bitfield move instructions. Table C3-32
shows the Bitfield insert and extract aliases.

Table C3-32 Bitfield insert and extract instructions

Mnemonic Instruction See

BFI Bitfield insert BFI on page C6-431
BFXIL Bitfield extract and insert low BFXIL on page C6-434
SBFIZ Signed bitfield insert in zero SBFIZ on page C6-676
SBFX Signed bitfield extract SBFX on page C6-679
UBFIZ Unsigned bitfield insert in zero UBFIZ on page C6-788
UBFX Unsigned bitfield extract UBFX on page C6-791

C3.3.8 Extract register

Depending on the register width of the operands, the Extract register instruction copies a 32-bit or 64-bit field from
a constant bit position within a double-width value formed by the concatenation of a pair of source registers to a
destination register.

Table C3-33 shows the Extract (immediate) instructions.

Table C3-33 Extract register instructions

Mnemonic Instruction See

EXTR Extract register from pair ~ EXTR on page C6-494

C3.3.9 Shift (immediate)

Shifts and rotates by a constant amount are implemented as aliases of the Bitfield move or Extract register
instructions. The shift or rotate amount must be in the range 0 to one less than the register width of the instruction,
inclusive.

Table C3-34 shows the aliases that can be used as immediate shift and rotate instructions.

Table C3-34 Aliases for immediate shift and rotate instructions

Mnemonic Instruction See

ASR Arithmetic shift right ASR (immediate) on page C6-426
LSL Logical shift left LSL (immediate) on page C6-609
LSR Logical shift right LSR (immediate) on page C6-612
ROR Rotate right ROR (immediate) on page C6-669

C3.3.10 Sigh-extend and Zero-extend

The Sign-extend and Zero-extend instructions are implemented as aliases of the Bitfield move instructions.

C3-150 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.3 Data processing - immediate

Table C3-35 shows the aliases that can be used as zero-extend and sign-extend instructions.

Table C3-35 Zero-extend and sign-extend instructions

Mnemonic

Instruction

See

SXTB

SXTH

Sign-extend byte

Sign-extend halfword

SXTB on page C6-775

SXTH on page C6-776

SXTW

Sign-extend word

SXTW on page C6-777

UXTB

Unsigned extend byte

UXTB on page C6-800

UXTH

Unsigned extend halfword

UXTH on page C6-801

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.

Non-Confidential - Beta

C3-151

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C3.4 Data processing - register
This section describes the instruction groups for data processing with all register operands. It contains the following
subsections:
. Arithmetic (shifted register).
. Arithmetic (extended register).
. Arithmetic with carry on page C3-153.
. Logical (shifted register) on page C3-154.
. Move (register) on page C3-155.
. Shift (register) on page C3-155.
. Multiply and divide on page C3-155.
. CRC32 on page C3-157.
. Bit operation on page C3-157.
. Conditional select on page C3-157.
. Conditional comparison on page C3-158.
For information about the encoding structure of the instructions in this instruction group, see Data processing -
register on page C4-204.
C3.4.1 Arithmetic (shifted register)
The Arithmetic (shifted register) instructions apply an optional shift operator to the second source register value
before performing the arithmetic operation. The register width of the instruction controls whether the new bits are
fed into the intermediate result on a right shift or rotate at bit[63] or bit[31].
The shift operators LSL, ASR and LSR accept an immediate shift amount in the range 0 to one less than the register
width of the instruction, inclusive.
Omitting the shift operator implies LSL #0, which means that there is no shift. A disassembler must not output LSL
#0. However, a disassembler must output all other shifts by zero.
The current stack pointer, SP or WSP, cannot be used with this class of instructions. See Arithmetic (extended
register) for arithmetic instructions that can operate on the current stack pointer.
Table C3-36 shows the Arithmetic (shifted register) instructions.
Table C3-36 Arithmetic (shifted register) instructions
Mnemonic Instruction See
ADD Add ADD (shifted register) on page C6-406
ADDS Add and set flags ADDS (shifted register) on page C6-413
SUB Subtract SUB (shifted register) on page C6-765
SUBS Subtract and set flags ~ SUBS (shifted register) on page C6-772
CMN Compare negative CMN (shifted register) on page C6-457
P Compare CMP (shifted register) on page C6-462
NEG Negate NEG (shifted register) on page C6-637
NEGS Negate and set flags NEGS on page C6-639
C34.2 Arithmetic (extended register)
The extended register instructions provide an optional sign-extension or zero-extension of a portion of the second
source register value, followed by an optional left shift by a constant amount of 1-4, inclusive.
C3-152 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.4 Data processing - register

The extended shift is described by the mandatory extend operator SXTB, SXTH, SXTW, UXTB, UXTH,or UXTW. This is
followed by an optional left shift amount. If the shift amount is not specified, the default shift amount is zero. A
disassembler must not output a shift amount of zero.

For 64-bit instruction forms the additional operators UXTX and SXTX use all 64 bits of the second source register with
an optional shift. In that case ARM recommends UXTX as the operator. If and only if at least one register is SP, ARM
recommends use of the LSL operator name, rather than UXTX, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

For 32-bit instruction forms the operators UXTW and SXTW both use all 32 bits of the second source register with an
optional shift. In that case ARM recommends UXTW as the operator. If and only if at least one register is WSP, ARM
recommends use of the LSL operator name, rather than UXTw, and when the shift amount is also zero then both the
operator and the shift amount can be omitted.

The non-flag setting variants of the extended register instruction permit the use of the current stack pointer as either
the destination register and the first source register. The flag setting variants only permit the stack pointer to be used
as the first source register.

In the 64-bit form of these instructions the final register operand is written as wm for all except the UXTX/LSL and SXTX
extend operators. For example:

CMP X4, W5, SXTW
ADD X1, X2, W3, UXTB #2
SuB Sp, SP, X1 // SUB SP, SP, X1, UXTX #0

Table C3-37 shows the Arithmetic (extended register) instructions.

Table C3-37 Arithmetic (extended register) instructions

Mnemonic Instruction See

ADD Add ADD (extended register) on page C6-402
ADDS Add and set flags ADDS (extended register) on page C6-408
SUB Subtract SUB (extended register) on page C6-761
SUBS Subtract and set flags ~ SUBS (extended register) on page C6-767
CMN Compare negative CMN (extended register) on page C6-454
P Compare CMP (extended register) on page C6-459

C3.4.3 Arithmetic with carry

The Arithmetic with carry instructions accept two source registers, with the carry flag as an additional input to the
calculation. They do not support shifting of the second source register.

Table C3-38 shows the Arithmetic with carry instructions

Table C3-38 Arithmetic with carry instructions

Mnemonic Instruction See

ADC Add with carry ADC on page C6-400

ADCS Add with carry and set flags ADCS on page C6-401

SBC Subtract with carry SBC on page C6-672
ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-153

ID121714

Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.4 Data processing - register

Table C3-38 Arithmetic with carry instructions (continued)

Mnemonic Instruction See

SBCS Subtract with carry and set flags ~ SBCS on page C6-674
NGC Negate with carry NGC on page C6-641

NGCS Negate with carry and set flags NGCS on page C6-642

C3.4.4 Logical (shifted register)

The Logical (shifted register) instructions apply an optional shift operator to the second source register value before
performing the main operation. The register width of the instruction controls whether the new bits are fed into the
intermediate result on a right shift or rotate at bit[63] or bit[31].

The shift operators LSL, ASR, LSR and ROR accept a constant immediate shift amount in the range 0 to one less than the
register width of the instruction, inclusive.

Omitting the shift operator and amount implies LSL #0, which means that there is no shift. A disassembler must not
output LSL #@. However, a disassembler must output all other shifts by zero.

Note

Apart from ANDS,TST and BICS the logical instructions do not set the condition flags, but the final result of a bit
operation can usually directly control a (Bz, CBNZ, TBZ, or TBNZ conditional branch.

Table C3-39 shows the Logical (shifted register) instructions.

Table C3-39 Logical (shifted register) instructions

Mnemonic Instruction See
AND Bitwise AND AND (shifted register) on page C6-419
ANDS Bitwise AND and set flags ANDS (shifted register) on page C6-423
BIC Bitwise bit clear BIC (shifted register) on page C6-435
BICS Bitwise bit clear and set flags ~ BICS (shifted register) on page C6-437
EON Bitwise exclusive OR NOT EON (shifted register) on page C6-487
EOR Bitwise exclusive OR EOR (shifted register) on page C6-491
ORR Bitwise inclusive OR ORR (shifted register) on page C6-648
MVN Bitwise NOT MVN on page C6-635
ORN Bitwise inclusive OR NOT ORN (shifted register) on page C6-644
TST Test bits TST (shifted register) on page C6-786
C3-154 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.4 Data processing - register

C3.4.5 Move (register)

The Move (register) instructions are aliases for other data processing instructions. They copy a value from a
general-purpose register to another general-purpose register or the current stack pointer, or from the current stack
pointer to a general-purpose register.

Table C3-40 MOV register instructions

Mnemonic Instruction See

MOV . Move register . MOV (register) on page C6-621
. Move register to SP or move SP to register o MOV (to/from SP) on page C6-617

C3.4.6 Shift (register)

In the Shift (register) instructions, the shift amount is the positive value in the second source register modulo the
register size. The register width of the instruction controls whether the new bits are fed into the result on a right shift
or rotate at bit[63] or bit[31].

Table C3-41 shows the Shift (register) instructions.

Table C3-41 Shift (register) instructions

Mnemonic Instruction See

ASRV Arithmetic shift right variable ~ ASRV on page C6-427
LSLV Logical shift left variable LSLV on page C6-610

LSRV Logical shift right variable LSRV on page C6-613

RORV Rotate right variable RORYV on page C6-671

However, the Shift (register) instructions have a preferred set of aliases that match the shift immediate aliases
described in Shift (immediate) on page C3-150.

Table C3-42 shows the aliases for Shift (register) instructions.

Table C3-42 Aliases for Variable shift instructions

Mnemonic Instruction See

ASR Avrithmetic shiftright ~ ASR (register) on page C6-425
LSL Logical shift left LSL (register) on page C6-608
LSR Logical shift right LSR (register) on page C6-611
ROR Rotate right ROR (register) on page C6-670

C3.4.7 Multiply and divide

This section describes the instructions used for integer multiplication and division. It contains the following
subsections:

. Multiply on page C3-156.
. Divide on page C3-156.

ARM DDI 0487A.e Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-155
ID121714 Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.4 Data processing - register

Multiply

The Multiply instructions write to a single 32-bit or 64-bit destination register, and are built around the fundamental
four operand multiply-add and multiply-subtract operation, together with 32-bit to 64-bit widening variants. A

64-bit to 128-bit widening multiple can be constructed with two instructions, using SMULH or UMULH to generate the
upper 64 bits. Table C3-43 shows the Multiply instructions.

Divide

Table C3-43 Multiply integer instructions

Mnemonic Instruction See

MADD Multiply-add MADD on page C6-614
MSUB Multiply-subtract MSUB on page C6-632
MNEG Multiply-negate MNEG on page C6-616
MUL Multiply MUL on page C6-634
SMADDL Signed multiply-add long SMADDL on page C6-684
SMSUBL Signed multiply-subtract long SMSUBL on page C6-688
SMNEGL Signed multiply-negate long SMNEGL on page C6-687
SMULL Signed multiply long SMULL on page C6-691
SMULH Signed multiply high SMULH on page C6-690
UMADDL Unsigned multiply-add long UMADDL on page C6-793
UMSUBL Unsigned multiply-subtract long UMSUBL on page C6-796
UMNEGL Unsigned multiply-negate long UMNEGL on page C6-795
UMULL Unsigned multiply long UMULL on page C6-799
UMULH Unsigned multiply high UMULH on page C6-798

The Divide instructions compute the quotient of a division, rounded towards zero. The remainder can then be
computed as (numerator - (quotient x denominator)), using the MSUB instruction.

If a signed integer division (INT_MIN / -1) is performed where INT_MIN is the most negative integer value
representable in the selected register size, then the result overflows the signed integer range. No indication of this
overflow is produced and the result that is written to the destination register is INT_MIN.

A division by zero results in a zero being written to the destination register, without any indication that the division

by zero occurred.

Table C3-44 shows the Divide instructions.

Table C3-44 Divide instructions

Mnemonic Instruction See
SDIV Signed divide SDIV on page C6-680
upIv Unsigned divide ~ UDIV on page C6-792

C3-156

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM DDI 0487A.e
ID121714

C3.4.8 CRC32

C3 A64 Instruction Set Overview
C3.4 Data processing - register

The optional CRC32 instructions operate on the general-purpose register file to update a 32-bit CRC value from an
input value comprising 1, 2, 4, or 8 bytes. There are two different classes of CRC instructions, CRC32 and CRC32(, that
support two commonly used 32-bit polynomials, known as CRC-32 and CRC-32C.

To fit with common usage, the bit order of the values is reversed as part of the operation.

When bits[19:16] of ID_AAB64ISARO_EL1 are set to 0b0eo1 the CRC instructions are implemented.

Table C3-45 shows the CRC instructions.

Table C3-45 CRC32 instructions

Mnemonic Instruction See

CRC32B CRC-32 sum from byte CRC32B, CRC32H, CRC32W, CRC32X on page C6-465
CRC32H CRC-32 sum from halfword CRC32B, CRC32H, CRC32W, CRC32X on page C6-465
CRC32W CRC-32 sum from word CRC32B, CRC32H, CRC32W, CRC32X on page C6-465
CRC32X CRC-32 sum from doubleword CRC32B, CRC32H, CRC32W, CRC32X on page C6-465
CRC32(B CRC-32C sum from byte CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-467
CRC32CH CRC-32C sum from halfword CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-467
CRC32CW CRC-32C sum from word CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-467
CRC32CX CRC-32C sum from doubleword =~ CRC32CB, CRC32CH, CRC32CW, CRC32CX on page C6-467

C3.4.9 Bit operation

Table C3-46 shows the Bit operation instructions.

Table C3-46 Bit operation instructions

Mnemonic Instruction See

CLS Count leading sign bits CLS on page C6-452
Lz Count leading zero bits CLZ on page C6-453
RBIT Reverse bit order RBIT on page C6-661
REV Reverse bytes in register REV on page C6-664
REV16 Reverse bytes in halfwords ~ REV16 on page C6-666
REV32 Reverses bytes in words REV32 on page C6-668

C3.4.10 Conditional select

The Conditional select instructions select between the first or second source register, depending on the current state
of the condition flags. When the named condition is true, the first source register is selected and its value is copied
without modification to the destination register. When the condition is false the second source register is selected
and its value might not be optionally inverted, negated, or incremented by one, before writing to the destination
register.

Other useful conditional set and conditional unary operations are implemented as aliases of the four Conditional
select instructions.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-157
Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.4 Data processing - register

Table C3-47 shows the Conditional select instructions.

Table C3-47 Conditional select instructions

Mnemonic Instruction See

CSEL Conditional select CSEL on page C6-469
CSINC Conditional select increment ~ CSINC on page C6-472
CSINV Conditional select inversion CSINV on page C6-474
CSNEG Conditional select negation CSNEG on page C6-476
CSET Conditional set CSET on page C6-470
CSETM Conditional set mask CSETM on page C6-471
CINC Conditional increment CINC on page C6-449
CINV Conditional invert CINV on page C6-450
CNEG Conditional negate CNEG on page C6-464

C34.11 Conditional comparison

The Conditional comparison instructions provide a conditional select for the NZCV condition flags, setting the flags
to the result of an arithmetic comparison of its two source register values if the named input condition is true, or to
an immediate value if the input condition is false. There are register and immediate forms. The immediate form
compares the source register to a small 5-bit unsigned value.

Table C3-48 shows the Conditional comparison instructions.

Table C3-48 Conditional comparison instructions

Mnemonic Instruction See

CCMN Conditional compare negative (register) CCMN (register) on page C6-446

CCMN Conditional compare negative (immediate) CCMN (immediate) on page C6-445

ccvp Conditional compare (register) CCMP (register) on page C6-448

ccvp Conditional compare (immediate) CCMP (immediate) on page C6-447
C3-158 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C35 Data processing - SIMD and floating-point

This section describes the instruction groups for data processing with SIMD and floating-point register operands.

It contains the following subsections that describe the scalar floating-point data processing instructions:

.

Floating-point move (register) on page C3-160.
Floating-point move (immediate) on page C3-160.
Floating-point conversion on page C3-161.
Floating-point round to integral on page C3-162.
Floating-point multiply-add on page C3-163.
Floating-point arithmetic (one source) on page C3-163.
Floating-point arithmetic (two sources) on page C3-163.
Floating-point minimum and maximum on page C3-163.
Floating-point comparison on page C3-164.
Floating-point conditional select on page C3-164.

It also contains the following subsections that describe the SIMD data processing instructions:

SIMD move on page C3-165

SIMD arithmetic on page C3-165.

SIMD compatre on page C3-167.

SIMD widening and narrowing arithmetic on page C3-168.
SIMD unary arithmetic on page C3-1609.

SIMD by element arithmetic on page C3-171.

SIMD permute on page C3-172.

SIMD immediate on page C3-172.

SIMD shift (immediate) on page C3-172.

SIMD floating-point and integer conversion on page C3-174.
SIMD reduce (across vector lanes) on page C3-175.

SIMD pairwise arithmetic on page C3-175.

SIMD table lookup on page C3-176.

The Cryptographic Extensions on page C3-176.

For information about the encoding structure of the instructions in this instruction group, see Data processing -
SIMD and floating point on page C4-211.

For information about the floating-point exceptions, see Floating-point exception traps on page D1-1550.

C3.5.1 Common features of SIMD instructions

A number of SIMD instructions come in three forms:

Wide:

— Thisis indicated by the suffix W. The element width of the destination register and the first source
operand is double that of the second source operand.

Long:

— Thisis indicated by the suffix L. The element width of the destination register is double that of both
source operands.

Narrow:

— Thisis indicated by the suffix N. The element width of the destination register is half that of both
source operands.

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-159
Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C35.2

Furthermore, each vector form of the instruction is part of a pair, with a second and upper half suffix of 2, to identify
the variant of the instruction:

. Where a SIMD operation widens or lengthens a 64-bit vector to a 128-bit vector, the instruction provides a
second part operation that can extract the source from the upper 64-bits of the source registers.

. Where a SIMD operation narrows a 128-bit vector to a 64-bit vector, the instruction provides a second-part
operation that can pack the result of a second operation into the upper part of the same destination register.

Note
This is referred to as a lane set specifier.

Floating-point move (register)

The Floating-point move (register) instructions copy a scalar floating-point value from one register to another
register without performing any conversion.

Some of the Floating-point move (register) instructions overlap with the functionality provided by the Advanced

SIMD instructions DUP, INS, and UMOV. However, ARM recommends using the FMOV instructions when operating on
scalar floating-point data to avoid the creation of scalar floating-point code that depends on the availability of the
Advanced SIMD instruction set.

Table C3-49 shows the Floating-point move (register) instructions.

Table C3-49 Floating-point move (register) instructions

Mnemonic

Instruction See

FMOV

. Floating-point move register without conversion . FMOQV (register) on page C7-1004

. Floating-point move to or from general-purpose register without ¢ FMOV (general) on page C7-1006
conversion

C3.5.3

Floating-point move (immediate)

The Floating-point move (immediate) instructions convert a small constant immediate floating-point value into a
single-precision or double-precision scalar floating-point value in a SIMD and floating-point register.

The floating-point constant can be specified either in decimal notation, such as 12.0 or -1.2e1, or as a string
beginning with ox followed by a hexadecimal representation of the IEEE 754 single-precision or double-precision
encoding. ARM recommends that a disassembler uses the decimal notation, provided that this displays the value
precisely.

The floating-point value must be expressible as (+ n/16 x 2r), where n is an integer in the range 16 <n <3l andris
an integer in the range of -3 <r <4, that is a normalized binary floating-point encoding with one sign bit, four bits
of fraction, and a 3-bit exponent.

Note

This encoding does not include the floating-point constant 0.0. There are several instructions that can store zero in
a SIMD and floating-point register, but ARM recommends that software uses FMOV Sd,WZR or FMOV Dd, XZR to provide
consistency across a range of microarchitectures.

Table C3-50 shows the Floating-point move (immediate) instruction:

Table C3-50 Floating-point move (immediate) instruction

Mnemonic Instruction See

FMOV Floating-point move immediate FMOV (scalar, immediate) on page C7-1009

C3-160

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3.54

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Floating-point conversion

The following subsections describe the conversion of floating-point values:
. Convert floating-point precision.
. Convert between floating-point and integer or fixed-point.

Convert floating-point precision

These instructions convert a floating-point scalar with one precision to a floating-point scalar with a different
precision, using the current rounding mode as specified by FPCR.RMode.

Table C3-51 shows the Floating-point precision conversion instruction.

Table C3-51 Floating-point precision conversion instruction

Mnemonic Instruction See

FOVT Floating-point convert precision (scalar) FCVT on page C7-904

Convert between floating-point and integer or fixed-point

These instructions convert a floating-point scalar in a SIMD and floating-point register to or from a signed or
unsigned integer or fixed-point in a general-purpose register. For a fixed-point value, a final immediate operand
indicates that the general-purpose register holds a fixed-point number and fbits indicates the number of bits after
the binary point. fbits is in the range 1- 32 inclusive for a 32-bit general-purpose register name, and 1-64 inclusive
for a 64-bit general-purpose register name.

These instructions generate the Invalid Operation exception, in response to a floating-point input of NaN, infinity,
or a numerical value that cannot be represented within the destination register. An out-of-range integer or
fixed-point result is saturated to the size of the destination register. A numeric result that differs from the input
generates an Inexact exception. When flush-to-zero mode is enabled, zero replaces a denormal input and generates

an Input Denormal exception.

Table C3-52 shows the Floating-point and fixed-point conversion instructions.

Table C3-52 Floating-point and integer or fixed-point conversion instructions

Mnemonic

Instruction

See

FCVTAS

FCVTAU

FCVTMS

FCVTMU

FCVTNS

FCVTNU

FCVTPS

Floating-point scalar convert to signed integer, rounding to
nearest with ties to away (scalar form)

Floating-point scalar convert to unsigned integer, rounding
to nearest with ties to away (scalar form)

Floating-point scalar convert to signed integer, rounding
toward minus infinity (scalar form)

Floating-point scalar convert to unsigned integer, rounding
toward minus infinity (scalar form)

Floating-point scalar convert to signed integer, rounding to
nearest with ties to even (scalar form)

Floating-point scalar convert to unsigned integer, rounding
to nearest with ties to even (scalar form)

Floating-point scalar convert to signed integer, rounding
toward positive infinity (scalar form)

FCVTAS (scalar) on page C7-908

FCVTAU (scalar) on page C7-912

FCVTMS (scalar) on page C7-917

FCVTMU (scalar) on page C7-921

FCVTNS (scalar) on page C7-926

FCVTNU (scalar) on page C7-930

FCVTPS (scalar) on page C7-934

ARM DDI 0487A.e

ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved.

Non-Confidential - Beta

C3-161

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-52 Floating-point and integer or fixed-point conversion instructions (continued)

Mnemonic Instruction See
FCVTPU Floating-point scalar convert to unsigned integer, rounding FCVTPU (scalar) on page C7-938
toward positive infinity (scalar form)
FCVTZS . Floating-point scalar convert to signed integer, . FCVTZS (scalar, integer) on page C7-948
rounding toward zero (scalar form)
. Floating-point convert to signed fixed-point, . FCVTZS (scalar, fixed-point) on page C7-946
rounding toward zero (scalar form)
FCVTZU . Floating-point scalar convert to unsigned integer, . FCVTZU (scalar, integer) on page C7-956
rounding toward zero (scalar form)
. Floating-point scalar convert to unsigned fixed-point, FCVTZU (scalar, fixed-point) on page C7-954
rounding toward zero (scalar form)
SCVTF . Signed integer scalar convert to floating-point, using SCVTF (vector, integer) on page C7-1188
the current rounding mode (scalar form)
. Signed fixed-point convert to floating-point, using . SCVTF (scalar, fixed-point) on page C7-1190
the current rounding mode (scalar form)
UCVTF . Unsigned integer scalar convert to floating-point, . UCVTF (vector, integer) on page C7-1401
using the current rounding mode (scalar form)
. Unsigned fixed-point convert to floating-point, using UCVTF (scalar, fixed-point) on page C7-1403
the current rounding mode (scalar form)
C3.5.5 Floating-point round to integral
The Floating-point round to integral instructions round a floating-point value to an integral floating-point value of
the same size.
These instructions generate the Invalid Operation exception in response to a signaling NaN input, or the Input
Denormal exception in response to a denormal input when flush-to-zero mode is enabled. The FRINTX instruction
can also generate the Inexact exception if the result is numeric and does not have the same numerical value as the
input. A zero input gives a zero result with the same sign, an infinite input gives an infinite result with the same sign,
and a NaN is propagated as in normal floating-point arithmetic.
Table C3-53 shows the Floating-point round to integral instructions.
Table C3-53 Floating-point round to integral instructions
Mnemonic Instruction See
FRINTA Floating-point round to integral, to nearest with ties to away FRINTA (scalar) on page C7-1036
FRINTI Floating-point round to integral, using current rounding mode FRINTI (scalar) on page C7-1038
FRINTM Floating-point round to integral, toward minus infinity FRINTM (scalar) on page C7-1040
FRINTN Floating-point round to integral, to nearest with ties to even FRINTN (scalar) on page C7-1042
FRINTP Floating-point round to integral, toward positive infinity FRINTP (scalar) on page C7-1044
FRINTX Floating-point round to integral exact, using current rounding mode FRINTX (scalar) on page C7-1046
FRINTZ Floating-point round to integral, toward zero FRINTZ (scalar) on page C7-1048
C3-162 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.6 Floating-point multiply-add

Table C3-54 shows the Floating-point multiply-add instructions that require three source register operands.

Table C3-54 Floating-point multiply-add instructions

Mnemonic Instruction See

FMADD Floating-point scalar fused multiply-add FMADD on page C7-960

FMSUB Floating-point scalar fused multiply-subtract FMSUB on page C7-1010

FNMADD Floating-point scalar negated fused multiply-add FNMADD on page C7-1025

FNMSUB Floating-point scalar negated fused multiply-subtract FNMSUB on page C7-1027
C3.5.7 Floating-point arithmetic (one source)

Table C3-55 shows the Floating-point arithmetic instructions that require a single source register operand.

Table C3-55 Floating-point arithmetic instructions with one source register

Mnemonic Instructions See

FABS Floating-point scalar absolute value FABS (scalar) on page C7-869

FNEG Floating-point scalar negate FNEG (scalar) on page C7-1023

FSQRT Floating-point scalar square root FSQRT (scalar) on page C7-1054
C3.5.8 Floating-point arithmetic (two sources)

Table C3-56 shows the Floating-point arithmetic instructions that require two source register operands.

Table C3-56 Floating-point arithmetic instructions with two source registers

Mnemonic Instruction See

FADD Floating-point scalar add FADD (scalar) on page C7-876

FDIV Floating-point scalar divide FDIV (scalar) on page C7-959

FMUL Floating-point scalar multiply FMUL (scalar) on page C7-1016

FNMUL Floating-point scalar multiply-negate FNMUL on page C7-1029

FSUB Floating-point scalar subtract FSUB (scalar) on page C7-1057
C3.5.9 Floating-point minimum and maximum

The min(x,y) and max(x,y) operations return a quiet NaN when either x or y is NaN. In flush-to-zero mode
subnormal operands are flushed to zero before comparison, and if the result of the comparison is the flushed value,
then a zero value is returned. Where both x and y are zero, or subnormal values flushed to zero, with different signs,
then +0.0 is returned by max() and -0.0 by min().

The minNum(x,y) and maxNum(x,y) operations follow the IEEE 754-2008 standard and return the numerical operand
when one operand is numerical and the other a quiet NaN. Apart from this additional handling of a single quiet NaN
the result is then identical to min(x,y) and max(x,y).

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-163
Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.10

C3.5.11

Table C3-57 shows the Floating-point instructions that can perform floating-point minimum and maximum
operations.

Table C3-57 Floating-point minimum and maximum instructions

Mnemonic Instruction See

FMAX Floating-point scalar maximum FMAX (scalar) on page C7-964
FMAXNM Floating-point scalar maximum number ~ FMAXNM (scalar) on page C7-968

FMIN Floating-point scalar minimum FMIN (scalar) on page C7-980

FMINNM Floating-point scalar minimum number ~ FMINNM (scalar) on page C7-984

Floating-point comparison

These instructions set the NZCV condition flags in PSTATE, based on the result of a comparison of two operands.
If the floating-point comparisons are unordered, where one or both operands are a form of NaN, the C and V bits
are set to 1 and the N and Z bits are cleared to 0.

Note

The NZCV flags in the FPSR are associated with AArch32 state. The A64 floating-point comparison instructions
do not change the condition flags in the FPSR.

For the conditional Floating-point comparison instructions, if the condition is TRUE, the flags are updated to the
result of the comparison, otherwise the flags are updated to the immediate value that is defined in the instruction
encoding.

The quiet compare instructions generate an Invalid Operation exception if either of the source operands is a
signaling NaN. The signaling compare instructions generate an Invalid Operation exception if either of the source
operands is any type of NaN.

Table C3-58 shows the Floating-point comparison instructions.

Table C3-58 Floating-point comparison instructions

Mnemonic Instruction See

FCMP Floating-point quiet compare FCMP on page C7-899

FCMPE Floating-point signaling compare FCMPE on page C7-901
FCCvp Floating-point conditional quiet compare FCCMP on page C7-879

FCCMPE Floating-point conditional signaling compare =~ FCCMPE on page C7-881

Floating-point conditional select

Table C3-59 shows the Floating-point conditional select instructions.

Table C3-59 Floating-point conditional select instructions

Mnemonic Instruction See

FCSEL Floating-point scalar conditional select ~FCSEL on page C7-903

C3-164

Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e
Non-Confidential - Beta ID121714

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

C3.5.12 SIMD move
The functionality of some data movement instructions overlaps with that provided by the scalar floating-point FMOV
instructions described in Floating-point move (register) on page C3-160.
Table C3-60 shows the SIMD move instructions.
Table C3-60 SIMD move instructions
Mnemonic Instruction See
DUP . Duplicate vector element to vector or scalar . DUP (element) on page C7-858
. Duplicate general-purpose register to vector . DUP (general) on page C7-861
INS . Insert vector element from another vector element . INS (element) on page C7-1058
. Insert vector element from general-purpose register ¢ INS (general) on page C7-1060
Note
Normally disassembled as MOv.
MOV . Move vector element to vector element . MOV (element) on page C7-1127
. Move general-purpose register to vector element . MOV (from general) on page C7-1129
. Move vector element to scalar . MOV (scalar) on page C7-1126
. Move vector element to general-purpose register . MOV (to general) on page C7-1132
umov Unsigned move vector element to general-purpose register ~ UMOV on page C7-1429
SMovV Signed move vector element to general-purpose register SMOV on page C7-1234
C3.5.13 SIMD arithmetic
Table C3-61 shows the SIMD arithmetic instructions.
Table C3-61 SIMD arithmetic instructions
Mnemonic Instruction See
ADD Add (vector and scalar form) ADD (vector) on page C7-812
AND Bitwise AND (vector form) AND (vector) on page C7-823
BIC Bitwise bit clear (register) (vector form) BIC (vector, register) on page C7-826
BIF Bitwise insert if false (vector form) BIF on page C7-827
BIT Bitwise insert if true (vector form) BIT on page C7-829
BSL Bitwise select (vector form) BSL on page C7-831
EOR Bitwise exclusive OR (vector form) EOR (vector) on page C7-863
FABD Floating-point absolute difference (vector and scalar form) FABD on page C7-866
FADD Floating-point add (vector form) FADD (scalar) on page C7-876
FDIV Floating-point divide (vector form) FDIV (vector) on page C7-958
FMAX Floating-point maximum (vector form) FMAXP (vector) on page C7-975
FMAXNM Floating-point maximum number (vector form) FMAXNM (vector) on page C7-966
FMIN Floating-point minimum (vector form) FMIN (vector) on page C7-978

ARM DDI 0487A.e

ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-165

Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-61 SIMD arithmetic instructions (continued)

Mnemonic Instruction See

FMINNM Floating-point minimum number (vector form) FMINNM (vector) on page C7-982

FMLA Floating-point fused multiply-add (vector form) FMLA (vector) on page C7-997

FMLS Floating-point fused multiply-subtract (vector form) FMLS (vector) on page C7-1001

FMUL Floating-point multiply (vector form) FMUL (vector) on page C7-1015

FMULX Floating-point multiply extended (vector and scalar form) FMULX on page C7-1020

FRECPS Floating-point reciprocal step (vector and scalar form) FRECPS on page C7-1032

FRSQRTS Floating-point reciprocal square root step (vector and scalar form) FRSQRTS on page C7-1051

FSUB Floating-point subtract (vector form) FSUB (vector) on page C7-1056

MLA Multiply-add (vector form) MLA (vector) on page C7-1120

MLS Multiply-subtract (vector form) MLS (vector) on page C7-1124

MUL Multiply (vector form) MUL (vector) on page C7-1138

MOV Move vector register (vector form) MOV (vector) on page C7-1131

ORN Bitwise inclusive OR NOT (vector form) ORN (vector) on page C7-1146

ORR Bitwise inclusive OR (register) (vector form) ORR (vector, register) on page C7-1149

PMUL Polynomial multiply (vector form) PMUL on page C7-1151

SABA Signed absolute difference and accumulate (vector form) SABA on page C7-1168

SABD Signed absolute difference (vector form) SABD on page C7-1172

SHADD Signed halving add (vector form) SHADD on page C7-1204

SHSUB Signed halving subtract (vector form) SHSUB on page C7-1211

SMAX Signed maximum (vector form) SMAX on page C7-1214

SMIN Signed minimum (vector form) SMIN on page C7-1220

SQADD Signed saturating add (vector and scalar form) SQADD on page C7-1242

SQDMULH Signed saturating doubling multiply returning high half (vector and scalar ~ SQDMULH (vector) on page C7-1261
form)

SQRSHL Signed saturating rounding shift left (register) (vector and scalar form) SQRSHL on page C7-1276

SQRDMULH Signed saturating rounding doubling multiply returning high half (vector ~ SQRDMULH (vector) on page C7-1274
and scalar form)

SQSHL Signed saturating shift left (register) (vector and scalar form) SQSHL (register) on page C7-1287

SQSUB Signed saturating subtract (vector and scalar form) SQSUB on page C7-1298

SRHADD Signed rounding halving add (vector form) SRHADD on page C7-1304

SRSHL Signed rounding shift left (register) (vector and scalar form) SRSHL on page C7-1307

SSHL Signed shift left (register) (vector and scalar form) SSHL on page C7-1313

SuB Subtract (vector and scalar form) SUB (vector) on page C7-1367

C3-166 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C3 A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-61 SIMD arithmetic instructions (continued)

Mnemonic Instruction See

UABA Unsigned absolute difference and accumulate (vector form) UABA on page C7-1381
UABD Unsigned absolute difference (vector form) UABD on page C7-1385
UHADD Unsigned halving add (vector form) UHADD on page C7-1407
UHSUB Unsigned halving subtract (vector form) UHSUB on page C7-1408
UMAX Unsigned maximum (vector form) UMAX on page C7-1409
UMIN Unsigned minimum (vector form) UMIN on page C7-1415
UQADD Unsigned saturating add (vector and scalar form) UQADD on page C7-1435
UQRSHL Unsigned saturating rounding shift left (register) (vector and scalar form) UQRSHL on page C7-1437
UQSHL Unsigned saturating shift left (register) (vector and scalar form) UQSHL (register) on page C7-1445
uQsuB Unsigned saturating subtract (vector and scalar form) UQSUB on page C7-1450
URHADD Unsigned rounding halving add (vector form) URHADD on page C7-1455
URSHL Unsigned rounding shift left (register) (vector and scalar form) URSHL on page C7-1456
USHL Unsigned shift left (register) (vector and scalar form) USHL on page C7-1463

C3.5.14 SIMD compare

The SIMD compare instructions compare vector or scalar elements according to the specified condition and set the
destination vector element to all ones if the condition holds, or to zero if the condition does not hold.

Note

Some of the comparisons, such as LS, LE, LO, and LT, can be made by reversing the operands and using the

opposite comparison, HS, GE, HI, or GT.

Table C3-62 shows that SIMD compare instructions.

Table C3-62 SIMD compare instructions

Mnemonic Instruction See

CMEQ . Compare bitwise equal (vector and scalar form) . CMEQ (register) on page C7-835
. Compare bitwise equal to zero (vector and scalar form) . CMEQ (zero) on page C7-837

CMHS Compare unsigned higher or same (vector and scalar form) CMHS (register) on page C7-849

CMGE . Compare signed greater than or equal (vector and scalar form) CMGE (register) on page C7-839
. Compare signed greater than or equal to zero (vector and scalar CMGE (zero) on page C7-841

form)

(MHI Compare unsigned higher (vector and scalar form) CMHI (register) on page C7-847

CMGT . Compare signed greater than (vector and scalar form) . CMGT (register) on page C7-843
. Compare signed greater than zero (vector and scalar form) . CMGT (zero) on page C7-845

CMLE Compare signed less than or equal to zero (vector and scalar form) CMLE (zero) on page C7-851

LT Compare signed less than zero (vector and scalar form) CMLT (zero) on page C7-853

ARM DDI 0487A.e

ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-167

Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-62 SIMD compare instructions (continued)

Mnemonic Instruction See
CMTST Compare bitwise test bits nonzero (vector and scalar form) CMTST on page C7-855
FCMEQ . Floating-point compare equal (vector and scalar form) . FCMEQ (register) on page C7-883
. Floating-point compare equal to zero (vector and scalar form) e FCMEQ (zero) on page C7-885
FCMGE . Floating-point compare greater than or equal (vector and scalar FCMGE (register) on page C7-887
form)
. Floating-point compare greater than or equal to zero (vector . FCMGE (zero) on page C7-889
and scalar form)
FCMGT . Floating-point compare greater than (vector and scalar form) . FCMGT (register) on page C7-891
. Floating-point compare greater than zero (vector and scalar . FCMGT (zero) on page C7-893
form)
FCMLE Floating-point compare less than or equal to zero (vector and scalar FCMLE (zero) on page C7-895
form)
FCMLT Floating-point compare less than zero (vector and scalar form) FCMLT (zero) on page C7-897
FACGE Floating-point absolute compare greater than or equal (vector and FACGE on page C7-871
scalar form)
FACGT Floating-point absolute compare greater than (vector and scalar form) FACGT on page C7-873
C3.5.15 SIMD widening and narrowing arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-159.

Table C3-63 shows the SIMD widening and narrowing arithmetic instructions.

Table C3-63 SIMD widening and narrowing arithmetic instructions

Mnemonic

Instruction

See

ADDHN, ADDHN2

Add returning high, narrow (vector form)

ADDHN, ADDHN2 on page C7-814

PMULL, PMULL2

Polynomial multiply long (vector form)

PMULL, PMULL2 on page C7-1153

See also The Cryptographic Extensions on
page C3-176

RADDHN, RADDHN2

Rounding add returning high, narrow (vector form)

RADDHN, RADDHN2 on page C7-1155

RSUBHN, RSUBHN2
SABAL, SABAL2
SABDL, SABDL2

SADDL, SADDL2

Rounding subtract returning high, narrow (vector form)

Signed absolute difference and accumulate long (vector form)

Signed absolute difference long (vector form)

Signed add long (vector form)

RSUBHN, RSUBHNZ2 on page C7-1166
SABAL, SABAL? on page C7-1170
SABDL, SABDL?2 on page C7-1174

SADDL, SADDL?2 on page C7-1178

SADDW, SADDW2

Signed add wide (vector form)

SADDW, SADDW?2 on page C7-1184

SMLAL, SMLAL2

Signed multiply-add long (vector form)

SMLAL, SMLALZ2 (vector) on page C7-1228

SMLSL, SMLSL2

SMULL, SMULL2

Signed multiply-subtract long (vector form)

Signed multiply long (vector form)

SMLSL, SMLSL2 (vector) on page C7-1232

SMULL, SMULLZ2 (vector) on page C7-1238

C3-168

Copyright © 2013, 2014 ARM Limited. All rights reserved.
Non-Confidential - Beta

ARM DDI 0487A.e
ID121714

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-63 SIMD widening and narrowing arithmetic instructions (continued)

Mnemonic Instruction See
SQDMLAL, SQDMLAL2 Signed saturating doubling multiply-add long (vector and SQDMLAL, SQDMLAL2 (vector) on
scalar form) page C7-1248
SQDMLSL, SQDMLSL2 Signed saturating doubling multiply-subtract long (vectorand ~ SQDMLSL, SQDMLSL2 (vector) on
scalar form) page C7-1255
SQDMULL, SQDMULL2 Signed saturating doubling multiply long (vector and scalar SQDMULL, SQDMULL2 (vector) on
form) page C7-1266
SSUBL, SSUBL2 Signed subtract long (vector form) SSUBL, SSUBL2 on page C7-1321
SSUBW, SSUBW2 Signed subtract wide (vector form) SSUBW, SSUBW?2 on page C7-1323
SUBHN, SUBHN2 Subtract returning high, narrow (vector form) SUBHN, SUBHN2 on page C7-1369
UABAL, UABAL2 Unsigned absolute difference and accumulate long (vector UABAL, UABAL2 on page C7-1383
form)
UABDL, UABDL2 Unsigned absolute difference long (vector form) UABDL, UABDL?2 on page C7-1387
UADDL, UADDL2 Unsigned add long (vector form) UADDL, UADDL2 on page C7-1391
UADDW, UADDW2 Unsigned add wide (vector form) UADDW, UADDW?2 on page C7-1397
UMLAL, UMLAL2 Unsigned multiply-add long (vector form) UMLAL, UMLALZ2 (vector) on page C7-1423
UMLSL, UMLSL2 Unsigned multiply-subtract long (vector form) UMLSL, UMLSL2 (vector) on page C7-1427
UMULL, UMULL2 Unsigned multiply long (vector form) UMULL, UMULL2 (vector) on page C7-1433
USUBL, USUBL2 Unsigned subtract long (vector form) USUBL, USUBL2 on page C7-1473
USUBW, USUBW2 Unsigned subtract wide (vector form) USUBW, USUBW2 on page C7-1475

C3.5.16 SIMD unary arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-159.

Table C3-64 shows the SIMD unary arithmetic instructions.

Table C3-64 SIMD unary arithmetic instructions

Mnemonic Instruction See

ABS Absolute value (vector and scalar form) ABS on page C7-810

CLS Count leading sign bits (vector form) CLS (vector) on page C7-833

Lz Count leading zero bits (vector form) CLZ (vector) on page C7-834

CNT Population count per byte (vector form) CNT on page C7-857

FABS Floating-point absolute (vector form) FABS (vector) on page C7-868

FCVTL, FCVTL2 Floating-point convert to higher precision long (vector form) FCVTL, FCVTL2 on page C7-914
FCVTN, FCVTN2 Floating-point convert to lower precision narrow (vector form) FCVTN, FCVTN2 on page C7-923
FCVTXN, FCVTXN2 Floating-point convert to lower precision narrow, rounding to odd FCVTXN, FCVTXN2 on page C7-940

(vector and scalar form)

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-169
Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-64 SIMD unary arithmetic instructions (continued)

Mnemonic Instruction See

FNEG Floating-point negate (vector form) FNEG (vector) on page C7-1022

FRECPE Floating-point reciprocal estimate (vector and scalar form) FRECPE on page C7-1030

FRECPX Floating-point reciprocal square root (scalar form) FRECPX on page C7-1034

FRINTA Floating-point round to integral, to nearest with ties to away (vector FRINTA (scalar) on page C7-1036
form)

FRINTI Floating-point round to integral, using current rounding mode (vector FRINTI (vector) on page C7-1037
form)

FRINTM Floating-point round to integral, toward minus infinity (vector form) FRINTM (vector) on page C7-1039

FRINTN Floating-point round to integral, to nearest with ties to even (vector FRINTN (vector) on page C7-1041
form)

FRINTP Floating-point round to integral, toward positive infinity (vector form) FRINTP (vector) on page C7-1043

FRINTX Floating-point round to integral exact, using current rounding mode FRINTX (vector) on page C7-1045
(vector form)

FRINTZ Floating-point round to integral, toward zero (vector form) FRINTZ (vector) on page C7-1047

FRSQRTE Floating-point reciprocal square root estimate (vector and scalar form) FRSQRTE on page C7-1049

FSQRT Floating-point square root (vector form) FSQRT (vector) on page C7-1053

MVN Bitwise NOT (vector form) MVN on page C7-1140

NEG Negate (vector and scalar form) NEG (vector) on page C7-1143

NOT Bitwise NOT (vector form) NOT on page C7-1145

RBIT Bitwise reverse (vector form) RBIT (vector) on page C7-1157

REV16 Reverse elements in 16-bit halfwords (vector form) REV16 (vector) on page C7-1158

REV32 Reverse elements in 32-bit words (vector form) REV32 (vector) on page C7-1160

REV64 Reverse elements in 64-bit doublewords (vector form) REV64 on page C7-1162

SADALP Signed add and accumulate long pairwise (vector form) SADALP on page C7-1176

SADDLP Signed add long pairwise (vector form) SADDLP on page C7-1180

SQABS Signed saturating absolute value (vector and scalar form) SQABS on page C7-1240

SQNEG Signed saturating negate (vector and scalar form) SQNEG on page C7-1269

SQXTN, SQXTN2

SQXTUN, SQXTUN2

Signed saturating extract narrow (vector form)

Signed saturating extract unsigned narrow (vector and scalar form)

SQXTN, SQXTN2 on page C7-1300
SQXTUN, SQXTUNZ2 on page C7-1302

SUQADD Signed saturating accumulate of unsigned value (vector and scalar SUQADD on page C7-1371
form)
SXTL, SXTL2 Signed extend long SXTL on page C7-1373
UADALP Unsigned add and accumulate long pairwise (vector form) UADALP on page C7-1389
UADDLP Unsigned add long pairwise (vector form) UADDLP on page C7-1393
C3-170 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-64 SIMD unary arithmetic instructions (continued)

Mnemonic

Instruction

See

UQXTN, UQXTN2

Unsigned saturating extract narrow (vector form)

UQXTN, UQXTN2 on page C7-1452

URECPE
URSQRTE

USQADD

UXTL, UXTL2

XTN, XTN2

Unsigned reciprocal estimate (vector form)
Unsigned reciprocal square root estimate (vector form)

Unsigned saturating accumulate of signed value (vector and scalar
form)

Unsigned extend long

Extract narrow (vector form)

URECPE on page C7-1454
URSQRTE on page C7-1460
USQADD on page C7-1469

UXTL on page C7-1477

XTN, XTN2 on page C7-1481

C3.5.17 SIMD by element arithmetic

For information about the variants of these instructions, see Common features of SIMD instructions on page C3-159.

Table C3-65 shows the SIMD by element arithmetic instructions.

Table C3-65 SIMD by element arithmetic instructions

Mnemonic Instruction See

FMLA Floating-point fused multiply-add (vector and scalar form) FMLA (by element) on page C7-994
FMLS Floating-point fused multiply-subtract (vector and scalar form) FMLS (by element) on page C7-998.
FMUL Floating-point multiply (vector and scalar form) FMUL (by element) on page C7-1012
FMULX Floating-point multiply extended (vector and scalar form) FMULX (by element) on page C7-1017
MLA Multiply-add (vector form) MLA (by element) on page C7-1118
MLS Multiply-subtract (vector form) MLS (by element) on page C7-1122
MUL Multiply (vector form) MUL (by element) on page C7-1136

SMLAL, SMLAL2

SMLSL, SMLSL2

SMULL, SMULL2

SQDMLAL, SQDMLAL2

SQDMLSL, SQDMLSL2

SQDMULH

SQDMULL, SQDMULL2

SQRDMULH

Signed multiply-add long (vector form)

Signed multiply-subtract long (vector form)

Signed multiply long (vector form)

Signed saturating doubling multiply-add long (vector and scalar
form)

Signed saturating doubling multiply-subtract long (vector form)
Signed saturating doubling multiply returning high half (vector
and scalar form)

Signed saturating doubling multiply long (vector and scalar form)

Signed saturating rounding doubling multiply returning high half
(vector and scalar form)

SMLAL, SMLAL2 (by element) on
page C7-1226

SMLSL, SMLSL2 (by element) on
page C7-1230

SMULL, SMULLZ2 (by element) on
page C7-1236

SQDMLAL, SQDMLALZ2 (by element) on
page C7-1244

SQDMLSL, SQDMLSL2 (by element) on
page C7-1251

SQDMULH (by element) on page C7-1258

SQDMULL, SQDMULL2 (by element) on
page C7-1263

SQRDMULH (by element) on page C7-1271

ARM DDI 0487A.e
ID121714

Copyright © 2013, 2014 ARM Limited. All rights reserved. C3-171

Non-Confidential - Beta

C3 A64 Instruction Set Overview
C3.5 Data processing - SIMD and floating-point

Table C3-65 SIMD by element arithmetic instructions (continued)

Mnemonic

Instruction

See

UMLAL, UMLAL2

Unsigned multiply-add long (vector form)

UMLAL, UMLAL2 (by element) on
page C7-1421

UMLSL, UMLSL2

Unsigned multiply-subtract long (vector form)

UMLSL, UMLSL2 (by element) on
page C7-1425

UMULL, UMULL2

Unsigned multiply long (vector form)

UMULL, UMULL2 (by element) on
page C7-1431

C3.5.18 SIMD permute
Table C3-66 shows the SIMD permute instructions.
Table C3-66 SIMD permute instructions
Mnemonic See
EXT Extract vector from a pair of vectors ~ EXT on page C7-865
TRN1 Transpose vectors (primary) TRN1 on page C7-1379
TRN2 Transpose vectors (secondary) TRN2 on page C7-1380
uzpr1 Unzip vectors (primary) UZP1 on page C7-1479
uzp2 Unzip vectors (secondary) UZP2 on page C7-1480
ZIP1 Zip vectors (primary) ZIP1 on page C7-1483
ZIP2 Zip vectors (secondary) ZIP2 on page C7-1485
C3.5.19 SIMD immediate
Table C3-67 shows the SIMD immediate instructions.
Table C3-67 SIMD immediate instructions
Mnemonic Instruction See
BIC Bitwise bit clear immediate BIC (vector, immediate) on page C7-824
FMOV Floating-point move immediate FMOQV (vector, immediate) on page C7-1002
MOVI Move immediate MOVI on page C7-1133
MVNI Move inverted immediate MVNI on page C7-1141
ORR Bitwise inclusive OR immediate ~ ORR (vector, immediate) on page C7-1147
C3.5.20 SIMD shift (immediate)
For information about the variants of these instructions, see Common features of SIMD instructions on page C3-159.
C3-172 Copyright © 2013, 2014 ARM Limited. All rights reserved. ARM DDI 0487A.e

Non-Confidential - Beta

ID121714

C3 A64 Instruction Set Overview

C3.5 Data processing - SIMD and floating-point

Table C3-68 shows the SIMD shift immediate instructions.

Table C3-68 SIMD shift (immediate) instructions

Mnemonic

Instruction

See

RSHRN, RSHRN2

Rounding shift right narrow immediate (vector form)

RSHRN, RSHRN2 on page C7-1164

SHL Shift left immediate (vector and scalar form) SHL on page C7-1205

SHLL, SHLL2 Shift left long (by element size) (vector form) SHLL, SHLL2 on page C7-1207
SHRN, SHRN2 Shift right narrow immediate (vector form) SHRN, SHRN2 on page C7-1209
SLI Shift left and insert immediate (vector and scalar form) SLI on page C7-1212

SQRSHRN, SQRSHRN2

SQRSHRUN, SQRSHRUN2

SQSHL

SQSHLU

SQSHRN, SQSHRN2

SQSHRUN, SQSHRUN2

Signed saturating rounded shift right narrow immediate (vector
and scalar form)

Signed saturating shift right unsigned narrow immediate (vector
and scalar form)

Signed saturating shift left immediate (vector and scalar fo