Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stable-diffusion-webui
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Administrator
stable-diffusion-webui
Commits
108be155
Unverified
Commit
108be155
authored
Oct 20, 2022
by
AngelBottomless
Committed by
GitHub
Oct 20, 2022
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
fix bugs and optimizations
parent
a71e0212
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
59 additions
and
46 deletions
+59
-46
hypernetwork.py
modules/hypernetworks/hypernetwork.py
+59
-46
No files found.
modules/hypernetworks/hypernetwork.py
View file @
108be155
...
@@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module):
...
@@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module):
linears
.
append
(
torch
.
nn
.
Linear
(
int
(
dim
*
layer_structure
[
i
]),
int
(
dim
*
layer_structure
[
i
+
1
])))
linears
.
append
(
torch
.
nn
.
Linear
(
int
(
dim
*
layer_structure
[
i
]),
int
(
dim
*
layer_structure
[
i
+
1
])))
# if skip_first_layer because first parameters potentially contain negative values
# if skip_first_layer because first parameters potentially contain negative values
# if i < 1: continue
# if i < 1: continue
if
add_layer_norm
:
linears
.
append
(
torch
.
nn
.
LayerNorm
(
int
(
dim
*
layer_structure
[
i
+
1
])))
if
activation_func
in
HypernetworkModule
.
activation_dict
:
if
activation_func
in
HypernetworkModule
.
activation_dict
:
linears
.
append
(
HypernetworkModule
.
activation_dict
[
activation_func
]())
linears
.
append
(
HypernetworkModule
.
activation_dict
[
activation_func
]())
else
:
else
:
print
(
"Invalid key {} encountered as activation function!"
.
format
(
activation_func
))
print
(
"Invalid key {} encountered as activation function!"
.
format
(
activation_func
))
# if use_dropout:
# if use_dropout:
# linears.append(torch.nn.Dropout(p=0.3))
# linears.append(torch.nn.Dropout(p=0.3))
if
add_layer_norm
:
linears
.
append
(
torch
.
nn
.
LayerNorm
(
int
(
dim
*
layer_structure
[
i
+
1
])))
self
.
linear
=
torch
.
nn
.
Sequential
(
*
linears
)
self
.
linear
=
torch
.
nn
.
Sequential
(
*
linears
)
...
@@ -115,11 +115,24 @@ class Hypernetwork:
...
@@ -115,11 +115,24 @@ class Hypernetwork:
for
k
,
layers
in
self
.
layers
.
items
():
for
k
,
layers
in
self
.
layers
.
items
():
for
layer
in
layers
:
for
layer
in
layers
:
layer
.
train
()
res
+=
layer
.
trainables
()
res
+=
layer
.
trainables
()
return
res
return
res
def
eval
(
self
):
for
k
,
layers
in
self
.
layers
.
items
():
for
layer
in
layers
:
layer
.
eval
()
for
items
in
self
.
weights
():
items
.
requires_grad
=
False
def
train
(
self
):
for
k
,
layers
in
self
.
layers
.
items
():
for
layer
in
layers
:
layer
.
train
()
for
items
in
self
.
weights
():
items
.
requires_grad
=
True
def
save
(
self
,
filename
):
def
save
(
self
,
filename
):
state_dict
=
{}
state_dict
=
{}
...
@@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
...
@@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
cpu
)
hypernetwork
=
shared
.
loaded_hypernetwork
hypernetwork
=
shared
.
loaded_hypernetwork
weights
=
hypernetwork
.
weights
()
for
weight
in
weights
:
weight
.
requires_grad
=
True
losses
=
torch
.
zeros
((
32
,))
losses
=
torch
.
zeros
((
32
,))
last_saved_file
=
"<none>"
last_saved_file
=
"<none>"
...
@@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
...
@@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
return
hypernetwork
,
filename
return
hypernetwork
,
filename
scheduler
=
LearnRateScheduler
(
learn_rate
,
steps
,
ititial_step
)
scheduler
=
LearnRateScheduler
(
learn_rate
,
steps
,
ititial_step
)
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
optimizer
=
torch
.
optim
.
AdamW
(
hypernetwork
.
weights
(),
lr
=
scheduler
.
learn_rate
)
optimizer
=
torch
.
optim
.
AdamW
(
weights
,
lr
=
scheduler
.
learn_rate
)
pbar
=
tqdm
.
tqdm
(
enumerate
(
ds
),
total
=
steps
-
ititial_step
)
pbar
=
tqdm
.
tqdm
(
enumerate
(
ds
),
total
=
steps
-
ititial_step
)
hypernetwork
.
train
()
for
i
,
entries
in
pbar
:
for
i
,
entries
in
pbar
:
hypernetwork
.
step
=
i
+
ititial_step
hypernetwork
.
step
=
i
+
ititial_step
...
@@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
...
@@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
losses
[
hypernetwork
.
step
%
losses
.
shape
[
0
]]
=
loss
.
item
()
losses
[
hypernetwork
.
step
%
losses
.
shape
[
0
]]
=
loss
.
item
()
optimizer
.
zero_grad
()
optimizer
.
zero_grad
(
set_to_none
=
True
)
loss
.
backward
()
loss
.
backward
()
del
loss
optimizer
.
step
()
optimizer
.
step
()
mean_loss
=
losses
.
mean
()
mean_loss
=
losses
.
mean
()
if
torch
.
isnan
(
mean_loss
):
if
torch
.
isnan
(
mean_loss
):
...
@@ -346,9 +356,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
...
@@ -346,9 +356,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
})
})
if
hypernetwork
.
step
>
0
and
images_dir
is
not
None
and
hypernetwork
.
step
%
create_image_every
==
0
:
if
hypernetwork
.
step
>
0
and
images_dir
is
not
None
and
hypernetwork
.
step
%
create_image_every
==
0
:
torch
.
cuda
.
empty_cache
()
last_saved_image
=
os
.
path
.
join
(
images_dir
,
f
'{hypernetwork_name}-{hypernetwork.step}.png'
)
last_saved_image
=
os
.
path
.
join
(
images_dir
,
f
'{hypernetwork_name}-{hypernetwork.step}.png'
)
with
torch
.
no_grad
():
optimizer
.
zero_grad
()
hypernetwork
.
eval
()
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
cond_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
device
)
shared
.
sd_model
.
first_stage_model
.
to
(
devices
.
device
)
...
@@ -385,6 +396,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
...
@@ -385,6 +396,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
image
.
save
(
last_saved_image
)
image
.
save
(
last_saved_image
)
last_saved_image
+=
f
", prompt: {preview_text}"
last_saved_image
+=
f
", prompt: {preview_text}"
hypernetwork
.
train
()
shared
.
state
.
job_no
=
hypernetwork
.
step
shared
.
state
.
job_no
=
hypernetwork
.
step
shared
.
state
.
textinfo
=
f
"""
shared
.
state
.
textinfo
=
f
"""
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment