Unverified Commit 32547f27 authored by AUTOMATIC1111's avatar AUTOMATIC1111 Committed by GitHub

Merge branch 'master' into xygrid_infotext_improvements

parents fe6e2362 3dae545a
---
name: Bug report
about: Create a report to help us improve
title: ''
labels: bug-report
assignees: ''
---
**Describe the bug**
A clear and concise description of what the bug is.
**To Reproduce**
Steps to reproduce the behavior:
1. Go to '...'
2. Click on '....'
3. Scroll down to '....'
4. See error
**Expected behavior**
A clear and concise description of what you expected to happen.
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Desktop (please complete the following information):**
- OS: [e.g. Windows, Linux]
- Browser [e.g. chrome, safari]
- Commit revision [looks like this: e68484500f76a33ba477d5a99340ab30451e557b; can be seen when launching webui.bat, or obtained manually by running `git rev-parse HEAD`]
**Additional context**
Add any other context about the problem here.
name: Bug Report
description: You think somethings is broken in the UI
title: "[Bug]: "
labels: ["bug-report"]
body:
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: Please search to see if an issue already exists for the bug you encountered, and that it hasn't been fixed in a recent build/commit.
options:
- label: I have searched the existing issues and checked the recent builds/commits
required: true
- type: markdown
attributes:
value: |
*Please fill this form with as much information as possible, don't forget to fill "What OS..." and "What browsers" and *provide screenshots if possible**
- type: textarea
id: what-did
attributes:
label: What happened?
description: Tell us what happened in a very clear and simple way
validations:
required: true
- type: textarea
id: steps
attributes:
label: Steps to reproduce the problem
description: Please provide us with precise step by step information on how to reproduce the bug
value: |
1. Go to ....
2. Press ....
3. ...
validations:
required: true
- type: textarea
id: what-should
attributes:
label: What should have happened?
description: tell what you think the normal behavior should be
validations:
required: true
- type: input
id: commit
attributes:
label: Commit where the problem happens
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
validations:
required: true
- type: dropdown
id: platforms
attributes:
label: What platforms do you use to access UI ?
multiple: true
options:
- Windows
- Linux
- MacOS
- iOS
- Android
- Other/Cloud
- type: dropdown
id: browsers
attributes:
label: What browsers do you use to access the UI ?
multiple: true
options:
- Mozilla Firefox
- Google Chrome
- Brave
- Apple Safari
- Microsoft Edge
- type: textarea
id: cmdargs
attributes:
label: Command Line Arguments
description: Are you using any launching parameters/command line arguments (modified webui-user.py) ? If yes, please write them below
render: Shell
- type: textarea
id: misc
attributes:
label: Additional information, context and logs
description: Please provide us with any relevant additional info, context or log output.
blank_issues_enabled: false
contact_links:
- name: WebUI Community Support
url: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions
about: Please ask and answer questions here.
---
name: Feature request
about: Suggest an idea for this project
title: ''
labels: ''
assignees: ''
---
**Is your feature request related to a problem? Please describe.**
A clear and concise description of what the problem is. Ex. I'm always frustrated when [...]
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
name: Feature request
description: Suggest an idea for this project
title: "[Feature Request]: "
labels: ["suggestion"]
body:
- type: checkboxes
attributes:
label: Is there an existing issue for this?
description: Please search to see if an issue already exists for the feature you want, and that it's not implemented in a recent build/commit.
options:
- label: I have searched the existing issues and checked the recent builds/commits
required: true
- type: markdown
attributes:
value: |
*Please fill this form with as much information as possible, provide screenshots and/or illustrations of the feature if possible*
- type: textarea
id: feature
attributes:
label: What would your feature do ?
description: Tell us about your feature in a very clear and simple way, and what problem it would solve
validations:
required: true
- type: textarea
id: workflow
attributes:
label: Proposed workflow
description: Please provide us with step by step information on how you'd like the feature to be accessed and used
value: |
1. Go to ....
2. Press ....
3. ...
validations:
required: true
- type: textarea
id: misc
attributes:
label: Additional information
description: Add any other context or screenshots about the feature request here.
# Please read the [contributing wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Contributing) before submitting a pull request!
If you have a large change, pay special attention to this paragraph:
> Before making changes, if you think that your feature will result in more than 100 lines changing, find me and talk to me about the feature you are proposing. It pains me to reject the hard work someone else did, but I won't add everything to the repo, and it's better if the rejection happens before you have to waste time working on the feature.
Otherwise, after making sure you're following the rules described in wiki page, remove this section and continue on.
**Describe what this pull request is trying to achieve.**
A clear and concise description of what you're trying to accomplish with this, so your intent doesn't have to be extracted from your code.
**Additional notes and description of your changes**
More technical discussion about your changes go here, plus anything that a maintainer might have to specifically take a look at, or be wary of.
**Environment this was tested in**
List the environment you have developed / tested this on. As per the contributing page, changes should be able to work on Windows out of the box.
- OS: [e.g. Windows, Linux]
- Browser [e.g. chrome, safari]
- Graphics card [e.g. NVIDIA RTX 2080 8GB, AMD RX 6600 8GB]
**Screenshots or videos of your changes**
If applicable, screenshots or a video showing off your changes. If it edits an existing UI, it should ideally contain a comparison of what used to be there, before your changes were made.
This is **required** for anything that touches the user interface.
\ No newline at end of file
# See https://github.com/actions/starter-workflows/blob/1067f16ad8a1eac328834e4b0ae24f7d206f810d/ci/pylint.yml for original reference file
name: Run Linting/Formatting on Pull Requests
on:
- push
- pull_request
# See https://docs.github.com/en/actions/using-workflows/workflow-syntax-for-github-actions#onpull_requestpull_request_targetbranchesbranches-ignore for syntax docs
# if you want to filter out branches, delete the `- pull_request` and uncomment these lines :
# pull_request:
# branches:
# - master
# branches-ignore:
# - development
jobs:
lint:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v3
with:
python-version: 3.10.6
- uses: actions/cache@v2
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: |
${{ runner.os }}-pip-
- name: Install PyLint
run: |
python -m pip install --upgrade pip
pip install pylint
# This lets PyLint check to see if it can resolve imports
- name: Install dependencies
run : |
export COMMANDLINE_ARGS="--skip-torch-cuda-test --exit"
python launch.py
- name: Analysing the code with pylint
run: |
pylint $(git ls-files '*.py')
name: Run basic features tests on CPU with empty SD model
on:
- push
- pull_request
jobs:
test:
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Set up Python 3.10
uses: actions/setup-python@v4
with:
python-version: 3.10.6
- uses: actions/cache@v3
with:
path: ~/.cache/pip
key: ${{ runner.os }}-pip-${{ hashFiles('**/requirements.txt') }}
restore-keys: ${{ runner.os }}-pip-
- name: Run tests
run: python launch.py --tests basic_features --no-half --disable-opt-split-attention --use-cpu all --skip-torch-cuda-test
- name: Upload main app stdout-stderr
uses: actions/upload-artifact@v3
if: always()
with:
name: stdout-stderr
path: |
test/stdout.txt
test/stderr.txt
__pycache__
*.ckpt
*.safetensors
*.pth
/ESRGAN/*
/SwinIR/*
......@@ -17,6 +18,7 @@ __pycache__
/webui.settings.bat
/embeddings
/styles.csv
/params.txt
/styles.csv.bak
/webui-user.bat
/webui-user.sh
......@@ -25,3 +27,8 @@ __pycache__
/.idea
notification.mp3
/SwinIR
/textual_inversion
.vscode
/extensions
/test/stdout.txt
/test/stderr.txt
# See https://pylint.pycqa.org/en/latest/user_guide/messages/message_control.html
[MESSAGES CONTROL]
disable=C,R,W,E,I
* @AUTOMATIC1111
# if you were managing a localization and were removed from this file, this is because
# the intended way to do localizations now is via extensions. See:
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Developing-extensions
# Make a repo with your localization and since you are still listed as a collaborator
# you can add it to the wiki page yourself. This change is because some people complained
# the git commit log is cluttered with things unrelated to almost everyone and
# because I believe this is the best overall for the project to handle localizations almost
# entirely without my oversight.
......@@ -11,39 +11,44 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- One click install and run script (but you still must install python and git)
- Outpainting
- Inpainting
- Prompt
- Stable Diffusion upscale
- Color Sketch
- Prompt Matrix
- Stable Diffusion Upscale
- Attention, specify parts of text that the model should pay more attention to
- a man in a ((txuedo)) - will pay more attentinoto tuxedo
- a man in a (txuedo:1.21) - alternative syntax
- Loopback, run img2img procvessing multiple times
- a man in a ((tuxedo)) - will pay more attention to tuxedo
- a man in a (tuxedo:1.21) - alternative syntax
- select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
- works with half precision floating point numbers
- train embeddings on 8GB (also reports of 6GB working)
- Extras tab with:
- GFPGAN, neural network that fixes faces
- CodeFormer, face restoration tool as an alternative to GFPGAN
- RealESRGAN, neural network upscaler
- ESRGAN, neural network upscaler with a lot of third party models
- SwinIR, neural network upscaler
- SwinIR and Swin2SR([see here](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/2092)), neural network upscalers
- LDSR, Latent diffusion super resolution upscaling
- Resizing aspect ratio options
- Sampling method selection
- Adjust sampler eta values (noise multiplier)
- More advanced noise setting options
- Interrupt processing at any time
- 4GB video card support (also reports of 2GB working)
- Correct seeds for batches
- Prompt length validation
- get length of prompt in tokensas you type
- get a warning after geenration if some text was truncated
- Live prompt token length validation
- Generation parameters
- parameters you used to generate images are saved with that image
- in PNG chunks for PNG, in EXIF for JPEG
- can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI
- can be disabled in settings
- drag and drop an image/text-parameters to promptbox
- Read Generation Parameters Button, loads parameters in promptbox to UI
- Settings page
- Running arbitrary python code from UI (must run with commandline flag to enable)
- Running arbitrary python code from UI (must run with --allow-code to enable)
- Mouseover hints for most UI elements
- Possible to change defaults/mix/max/step values for UI elements via text config
- Random artist button
......@@ -56,19 +61,37 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
- CLIP interrogator, a button that tries to guess prompt from an image
- Prompt Editing, a way to change prompt mid-generation, say to start making a watermelon and switch to anime girl midway
- Batch Processing, process a group of files using img2img
- Img2img Alternative
- Img2img Alternative, reverse Euler method of cross attention control
- Highres Fix, a convenience option to produce high resolution pictures in one click without usual distortions
- Reloading checkpoints on the fly
- Checkpoint Merger, a tab that allows you to merge two checkpoints into one
- Checkpoint Merger, a tab that allows you to merge up to 3 checkpoints into one
- [Custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Scripts) with many extensions from community
- [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once
- separate prompts using uppercase `AND`
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
- DeepDanbooru integration, creates danbooru style tags for anime prompts
- [xformers](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers), major speed increase for select cards: (add --xformers to commandline args)
- via extension: [History tab](https://github.com/yfszzx/stable-diffusion-webui-images-browser): view, direct and delete images conveniently within the UI
- Generate forever option
- Training tab
- hypernetworks and embeddings options
- Preprocessing images: cropping, mirroring, autotagging using BLIP or deepdanbooru (for anime)
- Clip skip
- Use Hypernetworks
- Use VAEs
- Estimated completion time in progress bar
- API
- Support for dedicated [inpainting model](https://github.com/runwayml/stable-diffusion#inpainting-with-stable-diffusion) by RunwayML.
- via extension: [Aesthetic Gradients](https://github.com/AUTOMATIC1111/stable-diffusion-webui-aesthetic-gradients), a way to generate images with a specific aesthetic by using clip images embeds (implementation of [https://github.com/vicgalle/stable-diffusion-aesthetic-gradients](https://github.com/vicgalle/stable-diffusion-aesthetic-gradients))
- [Stable Diffusion 2.0](https://github.com/Stability-AI/stablediffusion) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable-diffusion-20) for instructions
## Installation and Running
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
Alternatively, use Google Colab:
Alternatively, use online services (like Google Colab):
- [Colab, maintained by Akaibu](https://colab.research.google.com/drive/1kw3egmSn-KgWsikYvOMjJkVDsPLjEMzl)
- [Colab, original by me, outdated](https://colab.research.google.com/drive/1Iy-xW9t1-OQWhb0hNxueGij8phCyluOh).
- [List of Online Services](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Online-Services)
### Automatic Installation on Windows
1. Install [Python 3.10.6](https://www.python.org/downloads/windows/), checking "Add Python to PATH"
......@@ -104,17 +127,27 @@ Here's how to add code to this repo: [Contributing](https://github.com/AUTOMATIC
The documentation was moved from this README over to the project's [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki).
## Credits
Licenses for borrowed code can be found in `Settings -> Licenses` screen, and also in `html/licenses.html` file.
- Stable Diffusion - https://github.com/CompVis/stable-diffusion, https://github.com/CompVis/taming-transformers
- k-diffusion - https://github.com/crowsonkb/k-diffusion.git
- GFPGAN - https://github.com/TencentARC/GFPGAN.git
- CodeFormer - https://github.com/sczhou/CodeFormer
- ESRGAN - https://github.com/xinntao/ESRGAN
- SwinIR - https://github.com/JingyunLiang/SwinIR
- Swin2SR - https://github.com/mv-lab/swin2sr
- LDSR - https://github.com/Hafiidz/latent-diffusion
- MiDaS - https://github.com/isl-org/MiDaS
- Ideas for optimizations - https://github.com/basujindal/stable-diffusion
- Doggettx - Cross Attention layer optimization - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - Doggettx - https://github.com/Doggettx/stable-diffusion, original idea for prompt editing.
- Cross Attention layer optimization - InvokeAI, lstein - https://github.com/invoke-ai/InvokeAI (originally http://github.com/lstein/stable-diffusion)
- Textual Inversion - Rinon Gal - https://github.com/rinongal/textual_inversion (we're not using his code, but we are using his ideas).
- Idea for SD upscale - https://github.com/jquesnelle/txt2imghd
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Security advice - RyotaK
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)
......@@ -523,7 +523,6 @@ Affandi,0.7170285,nudity
Diane Arbus,0.655138,digipa-high-impact
Joseph Ducreux,0.65247905,digipa-high-impact
Berthe Morisot,0.7165984,fineart
Hilma AF Klint,0.71643853,scribbles
Hilma af Klint,0.71643853,scribbles
Filippino Lippi,0.7163017,fineart
Leonid Afremov,0.7163005,fineart
......@@ -738,14 +737,12 @@ Abraham Mignon,0.60605425,fineart
Albert Bloch,0.69573116,nudity
Charles Dana Gibson,0.67155975,fineart
Alexandre-Évariste Fragonard,0.6507174,fineart
Alexandre-Évariste Fragonard,0.6507174,fineart
Ernst Fuchs,0.6953538,nudity
Alfredo Jaar,0.6952965,digipa-high-impact
Judy Chicago,0.6952246,weird
Frans van Mieris the Younger,0.6951849,fineart
Aertgen van Leyden,0.6951305,fineart
Emily Carr,0.69512105,fineart
Frances Macdonald,0.6950408,scribbles
Frances MacDonald,0.6950408,scribbles
Hannah Höch,0.69495845,scribbles
Gillis Rombouts,0.58770025,fineart
......@@ -895,7 +892,6 @@ Richard McGuire,0.6820089,scribbles
Anni Albers,0.65708244,digipa-high-impact
Aleksey Savrasov,0.65207493,fineart
Wayne Barlowe,0.6537874,fineart
Giorgio De Chirico,0.6815907,fineart
Giorgio de Chirico,0.6815907,fineart
Ernest Procter,0.6815795,fineart
Adriaen Brouwer,0.6815058,fineart
......@@ -1045,7 +1041,6 @@ Bakemono Zukushi,0.67051035,anime
Lucy Madox Brown,0.67032814,fineart
Paul Wonner,0.6700563,scribbles
Guido Borelli Da Caluso,0.66966087,digipa-high-impact
Guido Borelli da Caluso,0.66966087,digipa-high-impact
Emil Alzamora,0.5844039,nudity
Heinrich Brocksieper,0.64469147,fineart
Dan Smith,0.669563,digipa-high-impact
......@@ -1242,7 +1237,6 @@ Betty Churcher,0.65387225,fineart
Claes Corneliszoon Moeyaert,0.65386075,fineart
David Bomberg,0.6537477,fineart
Abraham Bosschaert,0.6535562,fineart
Giuseppe De Nittis,0.65354455,fineart
Giuseppe de Nittis,0.65354455,fineart
John La Farge,0.65342575,fineart
Frits Thaulow,0.65341854,fineart
......@@ -1523,7 +1517,6 @@ Gertrude Harvey,0.5903887,fineart
Grant Wood,0.6266253,fineart
Fyodor Vasilyev,0.5234919,digipa-med-impact
Cagnaccio di San Pietro,0.6261671,fineart
Cagnaccio Di San Pietro,0.6261671,fineart
Doris Boulton-Maude,0.62593174,fineart
Adolf Hirémy-Hirschl,0.5946784,fineart
Harold von Schmidt,0.6256755,fineart
......@@ -2412,7 +2405,6 @@ Hermann Feierabend,0.5346168,digipa-high-impact
Antonio Donghi,0.4610982,digipa-low-impact
Adonna Khare,0.4858036,digipa-med-impact
James Stokoe,0.5015107,digipa-med-impact
Art & Language,0.5341332,digipa-high-impact
Agustín Fernández,0.53403986,fineart
Germán Londoño,0.5338712,fineart
Emmanuelle Moureaux,0.5335641,digipa-high-impact
......
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: modules.xlmr.BertSeriesModelWithTransformation
params:
name: "XLMR-Large"
\ No newline at end of file
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
......@@ -3,9 +3,9 @@ channels:
- pytorch
- defaults
dependencies:
- python=3.8.5
- pip=20.3
- python=3.10
- pip=22.2.2
- cudatoolkit=11.3
- pytorch=1.11.0
- torchvision=0.12.0
- numpy=1.19.2
- pytorch=1.12.1
- torchvision=0.13.1
- numpy=1.23.1
\ No newline at end of file
import os
import gc
import time
import warnings
......@@ -8,27 +9,49 @@ import torchvision
from PIL import Image
from einops import rearrange, repeat
from omegaconf import OmegaConf
import safetensors.torch
from ldm.models.diffusion.ddim import DDIMSampler
from ldm.util import instantiate_from_config, ismap
from modules import shared, sd_hijack
warnings.filterwarnings("ignore", category=UserWarning)
cached_ldsr_model: torch.nn.Module = None
# Create LDSR Class
class LDSR:
def load_model_from_config(self, half_attention):
global cached_ldsr_model
if shared.opts.ldsr_cached and cached_ldsr_model is not None:
print("Loading model from cache")
model: torch.nn.Module = cached_ldsr_model
else:
print(f"Loading model from {self.modelPath}")
_, extension = os.path.splitext(self.modelPath)
if extension.lower() == ".safetensors":
pl_sd = safetensors.torch.load_file(self.modelPath, device="cpu")
else:
pl_sd = torch.load(self.modelPath, map_location="cpu")
sd = pl_sd["state_dict"]
sd = pl_sd["state_dict"] if "state_dict" in pl_sd else pl_sd
config = OmegaConf.load(self.yamlPath)
model = instantiate_from_config(config.model)
config.model.target = "ldm.models.diffusion.ddpm.LatentDiffusionV1"
model: torch.nn.Module = instantiate_from_config(config.model)
model.load_state_dict(sd, strict=False)
model.cuda()
model = model.to(shared.device)
if half_attention:
model = model.half()
if shared.cmd_opts.opt_channelslast:
model = model.to(memory_format=torch.channels_last)
sd_hijack.model_hijack.hijack(model) # apply optimization
model.eval()
if shared.opts.ldsr_cached:
cached_ldsr_model = model
return {"model": model}
def __init__(self, model_path, yaml_path):
......@@ -93,6 +116,7 @@ class LDSR:
down_sample_method = 'Lanczos'
gc.collect()
if torch.cuda.is_available:
torch.cuda.empty_cache()
im_og = image
......@@ -101,8 +125,8 @@ class LDSR:
down_sample_rate = target_scale / 4
wd = width_og * down_sample_rate
hd = height_og * down_sample_rate
width_downsampled_pre = int(wd)
height_downsampled_pre = int(hd)
width_downsampled_pre = int(np.ceil(wd))
height_downsampled_pre = int(np.ceil(hd))
if down_sample_rate != 1:
print(
......@@ -110,7 +134,12 @@ class LDSR:
im_og = im_og.resize((width_downsampled_pre, height_downsampled_pre), Image.LANCZOS)
else:
print(f"Down sample rate is 1 from {target_scale} / 4 (Not downsampling)")
logs = self.run(model["model"], im_og, diffusion_steps, eta)
# pad width and height to multiples of 64, pads with the edge values of image to avoid artifacts
pad_w, pad_h = np.max(((2, 2), np.ceil(np.array(im_og.size) / 64).astype(int)), axis=0) * 64 - im_og.size
im_padded = Image.fromarray(np.pad(np.array(im_og), ((0, pad_h), (0, pad_w), (0, 0)), mode='edge'))
logs = self.run(model["model"], im_padded, diffusion_steps, eta)
sample = logs["sample"]
sample = sample.detach().cpu()
......@@ -120,9 +149,14 @@ class LDSR:
sample = np.transpose(sample, (0, 2, 3, 1))
a = Image.fromarray(sample[0])
# remove padding
a = a.crop((0, 0) + tuple(np.array(im_og.size) * 4))
del model
gc.collect()
if torch.cuda.is_available:
torch.cuda.empty_cache()
return a
......@@ -137,7 +171,7 @@ def get_cond(selected_path):
c = rearrange(c, '1 c h w -> 1 h w c')
c = 2. * c - 1.
c = c.to(torch.device("cuda"))
c = c.to(shared.device)
example["LR_image"] = c
example["image"] = c_up
......
import os
from modules import paths
def preload(parser):
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))
......@@ -5,15 +5,14 @@ import traceback
from basicsr.utils.download_util import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData
from modules.ldsr_model_arch import LDSR
from modules import shared
from modules.paths import models_path
from ldsr_model_arch import LDSR
from modules import shared, script_callbacks
import sd_hijack_autoencoder, sd_hijack_ddpm_v1
class UpscalerLDSR(Upscaler):
def __init__(self, user_path):
self.name = "LDSR"
self.model_path = os.path.join(models_path, self.name)
self.user_path = user_path
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
......@@ -26,6 +25,7 @@ class UpscalerLDSR(Upscaler):
yaml_path = os.path.join(self.model_path, "project.yaml")
old_model_path = os.path.join(self.model_path, "model.pth")
new_model_path = os.path.join(self.model_path, "model.ckpt")
safetensors_model_path = os.path.join(self.model_path, "model.safetensors")
if os.path.exists(yaml_path):
statinfo = os.stat(yaml_path)
if statinfo.st_size >= 10485760:
......@@ -34,6 +34,9 @@ class UpscalerLDSR(Upscaler):
if os.path.exists(old_model_path):
print("Renaming model from model.pth to model.ckpt")
os.rename(old_model_path, new_model_path)
if os.path.exists(safetensors_model_path):
model = safetensors_model_path
else:
model = load_file_from_url(url=self.model_url, model_dir=self.model_path,
file_name="model.ckpt", progress=True)
yaml = load_file_from_url(url=self.yaml_url, model_dir=self.model_path,
......@@ -54,3 +57,13 @@ class UpscalerLDSR(Upscaler):
return img
ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale)
def on_ui_settings():
import gradio as gr
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
shared.opts.add_option("ldsr_cached", shared.OptionInfo(False, "Cache LDSR model in memory", gr.Checkbox, {"interactive": True}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings)
This diff is collapsed.
This diff is collapsed.
import os
from modules import paths
def preload(parser):
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))
......@@ -8,49 +8,54 @@ import torch
from basicsr.utils.download_util import load_file_from_url
import modules.upscaler
from modules import shared, modelloader
from modules.bsrgan_model_arch import RRDBNet
from modules.paths import models_path
from modules import devices, modelloader
from scunet_model_arch import SCUNet as net
class UpscalerBSRGAN(modules.upscaler.Upscaler):
class UpscalerScuNET(modules.upscaler.Upscaler):
def __init__(self, dirname):
self.name = "BSRGAN"
self.model_path = os.path.join(models_path, self.name)
self.model_name = "BSRGAN 4x"
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
self.name = "ScuNET"
self.model_name = "ScuNET GAN"
self.model_name2 = "ScuNET PSNR"
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth"
self.user_path = dirname
super().__init__()
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
model_paths = self.find_models(ext_filter=[".pth"])
scalers = []
if len(model_paths) == 0:
scaler_data = modules.upscaler.UpscalerData(self.model_name, self.model_url, self, 4)
scalers.append(scaler_data)
add_model2 = True
for file in model_paths:
if "http" in file:
name = self.model_name
else:
name = modelloader.friendly_name(file)
if name == self.model_name2 or file == self.model_url2:
add_model2 = False
try:
scaler_data = modules.upscaler.UpscalerData(name, file, self, 4)
scalers.append(scaler_data)
except Exception:
print(f"Error loading BSRGAN model: {file}", file=sys.stderr)
print(f"Error loading ScuNET model: {file}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
if add_model2:
scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self)
scalers.append(scaler_data2)
self.scalers = scalers
def do_upscale(self, img: PIL.Image, selected_file):
torch.cuda.empty_cache()
model = self.load_model(selected_file)
if model is None:
return img
model.to(shared.device)
torch.cuda.empty_cache()
device = devices.get_device_for('scunet')
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(shared.device)
img = img.unsqueeze(0).to(device)
with torch.no_grad():
output = model(img)
output = output.squeeze().float().cpu().clamp_(0, 1).numpy()
......@@ -61,18 +66,22 @@ class UpscalerBSRGAN(modules.upscaler.Upscaler):
return PIL.Image.fromarray(output, 'RGB')
def load_model(self, path: str):
device = devices.get_device_for('scunet')
if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
progress=True)
else:
filename = path
if not os.path.exists(filename) or filename is None:
print(f"BSRGAN: Unable to load model from {filename}", file=sys.stderr)
if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None:
print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr)
return None
model = RRDBNet(in_nc=3, out_nc=3, nf=64, nb=23, gc=32, sf=4) # define network
model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64)
model.load_state_dict(torch.load(filename), strict=True)
model.eval()
for k, v in model.named_parameters():
v.requires_grad = False
model = model.to(device)
return model
This diff is collapsed.
import os
from modules import paths
def preload(parser):
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))
......@@ -5,16 +5,16 @@ import numpy as np
import torch
from PIL import Image
from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
from modules import modelloader
from modules.paths import models_path
from modules.shared import cmd_opts, opts, device
from modules.swinir_model_arch import SwinIR as net
from modules import modelloader, devices, script_callbacks, shared
from modules.shared import cmd_opts, opts
from swinir_model_arch import SwinIR as net
from swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
precision_scope = (
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
)
device_swinir = devices.get_device_for('swinir')
class UpscalerSwinIR(Upscaler):
......@@ -24,7 +24,6 @@ class UpscalerSwinIR(Upscaler):
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
"-L_x4_GAN.pth "
self.model_name = "SwinIR 4x"
self.model_path = os.path.join(models_path, self.name)
self.user_path = dirname
super().__init__()
scalers = []
......@@ -42,7 +41,7 @@ class UpscalerSwinIR(Upscaler):
model = self.load_model(model_file)
if model is None:
return img
model = model.to(device)
model = model.to(device_swinir, dtype=devices.dtype)
img = upscale(img, model)
try:
torch.cuda.empty_cache()
......@@ -58,6 +57,22 @@ class UpscalerSwinIR(Upscaler):
filename = path
if filename is None or not os.path.exists(filename):
return None
if filename.endswith(".v2.pth"):
model = net2(
upscale=scale,
in_chans=3,
img_size=64,
window_size=8,
img_range=1.0,
depths=[6, 6, 6, 6, 6, 6],
embed_dim=180,
num_heads=[6, 6, 6, 6, 6, 6],
mlp_ratio=2,
upsampler="nearest+conv",
resi_connection="1conv",
)
params = None
else:
model = net(
upscale=scale,
in_chans=3,
......@@ -71,28 +86,34 @@ class UpscalerSwinIR(Upscaler):
upsampler="nearest+conv",
resi_connection="3conv",
)
params = "params_ema"
pretrained_model = torch.load(filename)
model.load_state_dict(pretrained_model["params_ema"], strict=True)
if not cmd_opts.no_half:
model = model.half()
if params is not None:
model.load_state_dict(pretrained_model[params], strict=True)
else:
model.load_state_dict(pretrained_model, strict=True)
return model
def upscale(
img,
model,
tile=opts.SWIN_tile,
tile_overlap=opts.SWIN_tile_overlap,
tile=None,
tile_overlap=None,
window_size=8,
scale=4,
):
tile = tile or opts.SWIN_tile
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
img = np.array(img)
img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(device)
with torch.no_grad(), precision_scope("cuda"):
img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old
......@@ -119,9 +140,10 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img)
W = torch.zeros_like(E, dtype=torch.half, device=device)
E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list:
for w_idx in w_idx_list:
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
......@@ -134,6 +156,17 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
W[
..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf
].add_(out_patch_mask)
pbar.update(1)
output = E.div_(W)
return output
def on_ui_settings():
import gradio as gr
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings)
......@@ -166,7 +166,7 @@ class SwinTransformerBlock(nn.Module):
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
input_resolution (tuple[int]): Input resolution.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
......
This diff is collapsed.
// Stable Diffusion WebUI - Bracket checker
// Version 1.0
// By Hingashi no Florin/Bwin4L
// Counts open and closed brackets (round, square, curly) in the prompt and negative prompt text boxes in the txt2img and img2img tabs.
// If there's a mismatch, the keyword counter turns red and if you hover on it, a tooltip tells you what's wrong.
function checkBrackets(evt) {
textArea = evt.target;
tabName = evt.target.parentElement.parentElement.id.split("_")[0];
counterElt = document.querySelector('gradio-app').shadowRoot.querySelector('#' + tabName + '_token_counter');
promptName = evt.target.parentElement.parentElement.id.includes('neg') ? ' negative' : '';
errorStringParen = '(' + tabName + promptName + ' prompt) - Different number of opening and closing parentheses detected.\n';
errorStringSquare = '[' + tabName + promptName + ' prompt] - Different number of opening and closing square brackets detected.\n';
errorStringCurly = '{' + tabName + promptName + ' prompt} - Different number of opening and closing curly brackets detected.\n';
openBracketRegExp = /\(/g;
closeBracketRegExp = /\)/g;
openSquareBracketRegExp = /\[/g;
closeSquareBracketRegExp = /\]/g;
openCurlyBracketRegExp = /\{/g;
closeCurlyBracketRegExp = /\}/g;
totalOpenBracketMatches = 0;
totalCloseBracketMatches = 0;
totalOpenSquareBracketMatches = 0;
totalCloseSquareBracketMatches = 0;
totalOpenCurlyBracketMatches = 0;
totalCloseCurlyBracketMatches = 0;
openBracketMatches = textArea.value.match(openBracketRegExp);
if(openBracketMatches) {
totalOpenBracketMatches = openBracketMatches.length;
}
closeBracketMatches = textArea.value.match(closeBracketRegExp);
if(closeBracketMatches) {
totalCloseBracketMatches = closeBracketMatches.length;
}
openSquareBracketMatches = textArea.value.match(openSquareBracketRegExp);
if(openSquareBracketMatches) {
totalOpenSquareBracketMatches = openSquareBracketMatches.length;
}
closeSquareBracketMatches = textArea.value.match(closeSquareBracketRegExp);
if(closeSquareBracketMatches) {
totalCloseSquareBracketMatches = closeSquareBracketMatches.length;
}
openCurlyBracketMatches = textArea.value.match(openCurlyBracketRegExp);
if(openCurlyBracketMatches) {
totalOpenCurlyBracketMatches = openCurlyBracketMatches.length;
}
closeCurlyBracketMatches = textArea.value.match(closeCurlyBracketRegExp);
if(closeCurlyBracketMatches) {
totalCloseCurlyBracketMatches = closeCurlyBracketMatches.length;
}
if(totalOpenBracketMatches != totalCloseBracketMatches) {
if(!counterElt.title.includes(errorStringParen)) {
counterElt.title += errorStringParen;
}
} else {
counterElt.title = counterElt.title.replace(errorStringParen, '');
}
if(totalOpenSquareBracketMatches != totalCloseSquareBracketMatches) {
if(!counterElt.title.includes(errorStringSquare)) {
counterElt.title += errorStringSquare;
}
} else {
counterElt.title = counterElt.title.replace(errorStringSquare, '');
}
if(totalOpenCurlyBracketMatches != totalCloseCurlyBracketMatches) {
if(!counterElt.title.includes(errorStringCurly)) {
counterElt.title += errorStringCurly;
}
} else {
counterElt.title = counterElt.title.replace(errorStringCurly, '');
}
if(counterElt.title != '') {
counterElt.style = 'color: #FF5555;';
} else {
counterElt.style = '';
}
}
var shadowRootLoaded = setInterval(function() {
var shadowTextArea = document.querySelector('gradio-app').shadowRoot.querySelectorAll('#txt2img_prompt > label > textarea');
if(shadowTextArea.length < 1) {
return false;
}
clearInterval(shadowRootLoaded);
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_prompt').onkeyup = checkBrackets;
document.querySelector('gradio-app').shadowRoot.querySelector('#txt2img_neg_prompt').onkeyup = checkBrackets;
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_prompt').onkeyup = checkBrackets;
document.querySelector('gradio-app').shadowRoot.querySelector('#img2img_neg_prompt').onkeyup = checkBrackets;
}, 1000);
import random
from modules import script_callbacks, shared
import gradio as gr
art_symbol = '\U0001f3a8' # 🎨
global_prompt = None
related_ids = {"txt2img_prompt", "txt2img_clear_prompt", "img2img_prompt", "img2img_clear_prompt" }
def roll_artist(prompt):
allowed_cats = set([x for x in shared.artist_db.categories() if len(shared.opts.random_artist_categories)==0 or x in shared.opts.random_artist_categories])
artist = random.choice([x for x in shared.artist_db.artists if x.category in allowed_cats])
return prompt + ", " + artist.name if prompt != '' else artist.name
def add_roll_button(prompt):
roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0)
roll.click(
fn=roll_artist,
_js="update_txt2img_tokens",
inputs=[
prompt,
],
outputs=[
prompt,
]
)
def after_component(component, **kwargs):
global global_prompt
elem_id = kwargs.get('elem_id', None)
if elem_id not in related_ids:
return
if elem_id == "txt2img_prompt":
global_prompt = component
elif elem_id == "txt2img_clear_prompt":
add_roll_button(global_prompt)
elif elem_id == "img2img_prompt":
global_prompt = component
elif elem_id == "img2img_clear_prompt":
add_roll_button(global_prompt)
script_callbacks.on_after_component(after_component)
<div>
<a href="/docs">API</a>
 • 
<a href="https://github.com/AUTOMATIC1111/stable-diffusion-webui">Github</a>
 • 
<a href="https://gradio.app">Gradio</a>
 • 
<a href="/" onclick="javascript:gradioApp().getElementById('settings_restart_gradio').click(); return false">Reload UI</a>
</div>
This diff is collapsed.
......@@ -3,12 +3,12 @@ let currentWidth = null;
let currentHeight = null;
let arFrameTimeout = setTimeout(function(){},0);
function dimensionChange(e,dimname){
function dimensionChange(e, is_width, is_height){
if(dimname == 'Width'){
if(is_width){
currentWidth = e.target.value*1.0
}
if(dimname == 'Height'){
if(is_height){
currentHeight = e.target.value*1.0
}
......@@ -18,22 +18,13 @@ function dimensionChange(e,dimname){
return;
}
var img2imgMode = gradioApp().querySelector('#mode_img2img.tabs > div > button.rounded-t-lg.border-gray-200')
if(img2imgMode){
img2imgMode=img2imgMode.innerText
}else{
return;
}
var redrawImage = gradioApp().querySelector('div[data-testid=image] img');
var inpaintImage = gradioApp().querySelector('#img2maskimg div[data-testid=image] img')
var targetElement = null;
if(img2imgMode=='img2img' && redrawImage){
targetElement = redrawImage;
}else if(img2imgMode=='Inpaint' && inpaintImage){
targetElement = inpaintImage;
var tabIndex = get_tab_index('mode_img2img')
if(tabIndex == 0){
targetElement = gradioApp().querySelector('div[data-testid=image] img');
} else if(tabIndex == 1){
targetElement = gradioApp().querySelector('#img2maskimg div[data-testid=image] img');
}
if(targetElement){
......@@ -99,21 +90,19 @@ onUiUpdate(function(){
if(inImg2img){
let inputs = gradioApp().querySelectorAll('input');
inputs.forEach(function(e){
let parentLabel = e.parentElement.querySelector('label')
if(parentLabel && parentLabel.innerText){
if(!e.classList.contains('scrollwatch')){
if(parentLabel.innerText == 'Width' || parentLabel.innerText == 'Height'){
e.addEventListener('input', function(e){dimensionChange(e,parentLabel.innerText)} )
var is_width = e.parentElement.id == "img2img_width"
var is_height = e.parentElement.id == "img2img_height"
if((is_width || is_height) && !e.classList.contains('scrollwatch')){
e.addEventListener('input', function(e){dimensionChange(e, is_width, is_height)} )
e.classList.add('scrollwatch')
}
if(parentLabel.innerText == 'Width'){
if(is_width){
currentWidth = e.value*1.0
}
if(parentLabel.innerText == 'Height'){
if(is_height){
currentHeight = e.value*1.0
}
}
}
})
}
});
contextMenuInit = function(){
let eventListenerApplied=false;
let menuSpecs = new Map();
const uid = function(){
return Date.now().toString(36) + Math.random().toString(36).substr(2);
}
function showContextMenu(event,element,menuEntries){
let posx = event.clientX + document.body.scrollLeft + document.documentElement.scrollLeft;
let posy = event.clientY + document.body.scrollTop + document.documentElement.scrollTop;
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
}
let tabButton = uiCurrentTab
let baseStyle = window.getComputedStyle(tabButton)
const contextMenu = document.createElement('nav')
contextMenu.id = "context-menu"
contextMenu.style.background = baseStyle.background
contextMenu.style.color = baseStyle.color
contextMenu.style.fontFamily = baseStyle.fontFamily
contextMenu.style.top = posy+'px'
contextMenu.style.left = posx+'px'
const contextMenuList = document.createElement('ul')
contextMenuList.className = 'context-menu-items';
contextMenu.append(contextMenuList);
menuEntries.forEach(function(entry){
let contextMenuEntry = document.createElement('a')
contextMenuEntry.innerHTML = entry['name']
contextMenuEntry.addEventListener("click", function(e) {
entry['func']();
})
contextMenuList.append(contextMenuEntry);
})
gradioApp().getRootNode().appendChild(contextMenu)
let menuWidth = contextMenu.offsetWidth + 4;
let menuHeight = contextMenu.offsetHeight + 4;
let windowWidth = window.innerWidth;
let windowHeight = window.innerHeight;
if ( (windowWidth - posx) < menuWidth ) {
contextMenu.style.left = windowWidth - menuWidth + "px";
}
if ( (windowHeight - posy) < menuHeight ) {
contextMenu.style.top = windowHeight - menuHeight + "px";
}
}
function appendContextMenuOption(targetElementSelector,entryName,entryFunction){
currentItems = menuSpecs.get(targetElementSelector)
if(!currentItems){
currentItems = []
menuSpecs.set(targetElementSelector,currentItems);
}
let newItem = {'id':targetElementSelector+'_'+uid(),
'name':entryName,
'func':entryFunction,
'isNew':true}
currentItems.push(newItem)
return newItem['id']
}
function removeContextMenuOption(uid){
menuSpecs.forEach(function(v,k) {
let index = -1
v.forEach(function(e,ei){if(e['id']==uid){index=ei}})
if(index>=0){
v.splice(index, 1);
}
})
}
function addContextMenuEventListener(){
if(eventListenerApplied){
return;
}
gradioApp().addEventListener("click", function(e) {
let source = e.composedPath()[0]
if(source.id && source.id.indexOf('check_progress')>-1){
return
}
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
}
});
gradioApp().addEventListener("contextmenu", function(e) {
let oldMenu = gradioApp().querySelector('#context-menu')
if(oldMenu){
oldMenu.remove()
}
menuSpecs.forEach(function(v,k) {
if(e.composedPath()[0].matches(k)){
showContextMenu(e,e.composedPath()[0],v)
e.preventDefault()
return
}
})
});
eventListenerApplied=true
}
return [appendContextMenuOption, removeContextMenuOption, addContextMenuEventListener]
}
initResponse = contextMenuInit();
appendContextMenuOption = initResponse[0];
removeContextMenuOption = initResponse[1];
addContextMenuEventListener = initResponse[2];
(function(){
//Start example Context Menu Items
let generateOnRepeat = function(genbuttonid,interruptbuttonid){
let genbutton = gradioApp().querySelector(genbuttonid);
let interruptbutton = gradioApp().querySelector(interruptbuttonid);
if(!interruptbutton.offsetParent){
genbutton.click();
}
clearInterval(window.generateOnRepeatInterval)
window.generateOnRepeatInterval = setInterval(function(){
if(!interruptbutton.offsetParent){
genbutton.click();
}
},
500)
}
appendContextMenuOption('#txt2img_generate','Generate forever',function(){
generateOnRepeat('#txt2img_generate','#txt2img_interrupt');
})
appendContextMenuOption('#img2img_generate','Generate forever',function(){
generateOnRepeat('#img2img_generate','#img2img_interrupt');
})
let cancelGenerateForever = function(){
clearInterval(window.generateOnRepeatInterval)
}
appendContextMenuOption('#txt2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#txt2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_interrupt','Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#img2img_generate', 'Cancel generate forever',cancelGenerateForever)
appendContextMenuOption('#roll','Roll three',
function(){
let rollbutton = get_uiCurrentTabContent().querySelector('#roll');
setTimeout(function(){rollbutton.click()},100)
setTimeout(function(){rollbutton.click()},200)
setTimeout(function(){rollbutton.click()},300)
}
)
})();
//End example Context Menu Items
onUiUpdate(function(){
addContextMenuEventListener()
});
......@@ -9,11 +9,19 @@ function dropReplaceImage( imgWrap, files ) {
return;
}
const tmpFile = files[0];
imgWrap.querySelector('.modify-upload button + button, .touch-none + div button + button')?.click();
const callback = () => {
const fileInput = imgWrap.querySelector('input[type="file"]');
if ( fileInput ) {
if ( files.length === 0 ) {
files = new DataTransfer();
files.items.add(tmpFile);
fileInput.files = files.files;
} else {
fileInput.files = files;
}
fileInput.dispatchEvent(new Event('change'));
}
};
......@@ -43,7 +51,7 @@ function dropReplaceImage( imgWrap, files ) {
window.document.addEventListener('dragover', e => {
const target = e.composedPath()[0];
const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap ) {
if ( !imgWrap && target.placeholder && target.placeholder.indexOf("Prompt") == -1) {
return;
}
e.stopPropagation();
......@@ -53,6 +61,9 @@ window.document.addEventListener('dragover', e => {
window.document.addEventListener('drop', e => {
const target = e.composedPath()[0];
if (target.placeholder.indexOf("Prompt") == -1) {
return;
}
const imgWrap = target.closest('[data-testid="image"]');
if ( !imgWrap ) {
return;
......
addEventListener('keydown', (event) => {
let target = event.originalTarget || event.composedPath()[0];
if (!target.matches("#toprow textarea.gr-text-input[placeholder]")) return;
if (! (event.metaKey || event.ctrlKey)) return;
let plus = "ArrowUp"
let minus = "ArrowDown"
if (event.key != plus && event.key != minus) return;
let selectionStart = target.selectionStart;
let selectionEnd = target.selectionEnd;
// If the user hasn't selected anything, let's select their current parenthesis block
if (selectionStart === selectionEnd) {
// Find opening parenthesis around current cursor
const before = target.value.substring(0, selectionStart);
let beforeParen = before.lastIndexOf("(");
if (beforeParen == -1) return;
let beforeParenClose = before.lastIndexOf(")");
while (beforeParenClose !== -1 && beforeParenClose > beforeParen) {
beforeParen = before.lastIndexOf("(", beforeParen - 1);
beforeParenClose = before.lastIndexOf(")", beforeParenClose - 1);
}
// Find closing parenthesis around current cursor
const after = target.value.substring(selectionStart);
let afterParen = after.indexOf(")");
if (afterParen == -1) return;
let afterParenOpen = after.indexOf("(");
while (afterParenOpen !== -1 && afterParen > afterParenOpen) {
afterParen = after.indexOf(")", afterParen + 1);
afterParenOpen = after.indexOf("(", afterParenOpen + 1);
}
if (beforeParen === -1 || afterParen === -1) return;
// Set the selection to the text between the parenthesis
const parenContent = target.value.substring(beforeParen + 1, selectionStart + afterParen);
const lastColon = parenContent.lastIndexOf(":");
selectionStart = beforeParen + 1;
selectionEnd = selectionStart + lastColon;
target.setSelectionRange(selectionStart, selectionEnd);
}
event.preventDefault();
if (selectionStart == 0 || target.value[selectionStart - 1] != "(") {
target.value = target.value.slice(0, selectionStart) +
"(" + target.value.slice(selectionStart, selectionEnd) + ":1.0)" +
target.value.slice(selectionEnd);
target.focus();
target.selectionStart = selectionStart + 1;
target.selectionEnd = selectionEnd + 1;
} else {
end = target.value.slice(selectionEnd + 1).indexOf(")") + 1;
weight = parseFloat(target.value.slice(selectionEnd + 1, selectionEnd + 1 + end));
if (isNaN(weight)) return;
if (event.key == minus) weight -= 0.1;
if (event.key == plus) weight += 0.1;
weight = parseFloat(weight.toPrecision(12));
target.value = target.value.slice(0, selectionEnd + 1) +
weight +
target.value.slice(selectionEnd + 1 + end - 1);
target.focus();
target.selectionStart = selectionStart;
target.selectionEnd = selectionEnd;
}
// Since we've modified a Gradio Textbox component manually, we need to simulate an `input` DOM event to ensure its
// internal Svelte data binding remains in sync.
target.dispatchEvent(new Event("input", { bubbles: true }));
});
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment