Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Contribute to GitLab
Sign in / Register
Toggle navigation
S
stable-diffusion-webui
Project
Project
Details
Activity
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Administrator
stable-diffusion-webui
Commits
7267b7d2
Commit
7267b7d2
authored
Sep 19, 2022
by
C43H66N12O12S2
Committed by
AUTOMATIC1111
Sep 20, 2022
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
extremely basic and incomplete swinir implementation
parent
9035afba
Expand all
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
941 additions
and
0 deletions
+941
-0
swinir.py
swinir.py
+74
-0
swinir_arch.py
swinir_arch.py
+867
-0
No files found.
swinir.py
0 → 100644
View file @
7267b7d2
import
sys
import
traceback
import
cv2
from
collections
import
OrderedDict
import
os
import
requests
from
collections
import
namedtuple
import
numpy
as
np
from
PIL
import
Image
import
torch
import
modules.images
from
modules.shared
import
cmd_opts
,
opts
,
device
from
modules.swinir_arch
import
SwinIR
as
net
precision_scope
=
torch
.
autocast
if
cmd_opts
.
precision
==
"autocast"
else
contextlib
.
nullcontext
def
load_model
(
task
=
"realsr"
,
large_model
=
True
,
model_path
=
next
(
os
.
listdir
(
cmd_opts
.
esrgan_models_path
))):
if
not
large_model
:
# use 'nearest+conv' to avoid block artifacts
model
=
net
(
upscale
=
scale
,
in_chans
=
3
,
img_size
=
64
,
window_size
=
8
,
img_range
=
1.
,
depths
=
[
6
,
6
,
6
,
6
,
6
,
6
],
embed_dim
=
180
,
num_heads
=
[
6
,
6
,
6
,
6
,
6
,
6
],
mlp_ratio
=
2
,
upsampler
=
'nearest+conv'
,
resi_connection
=
'1conv'
)
else
:
# larger model size; use '3conv' to save parameters and memory; use ema for GAN training
model
=
net
(
upscale
=
scale
,
in_chans
=
3
,
img_size
=
64
,
window_size
=
8
,
img_range
=
1.
,
depths
=
[
6
,
6
,
6
,
6
,
6
,
6
,
6
,
6
,
6
],
embed_dim
=
240
,
num_heads
=
[
8
,
8
,
8
,
8
,
8
,
8
,
8
,
8
,
8
],
mlp_ratio
=
2
,
upsampler
=
'nearest+conv'
,
resi_connection
=
'3conv'
)
pretrained_model
=
torch
.
load
(
model_path
)
model
.
load_state_dict
(
pretrained_model
,
strict
=
True
)
return
model
.
half
()
.
to
(
device
)
def
upscale
(
img
,
tile
=
opts
.
ESRGAN_tile
,
tile_overlap
=
opts
.
ESRGAN_tile_overlap
,
window_size
=
8
,
scale
=
4
):
img
=
cv2
.
imread
(
img
,
cv2
.
IMREAD_COLOR
)
.
astype
(
np
.
float16
)
/
255.
model
=
load_model
()
with
torch
.
no_grad
(),
precision_scope
(
"cuda"
):
_
,
_
,
h_old
,
w_old
=
img
.
size
()
h_pad
=
(
h_old
//
window_size
+
1
)
*
window_size
-
h_old
w_pad
=
(
w_old
//
window_size
+
1
)
*
window_size
-
w_old
img
=
torch
.
cat
([
img
,
torch
.
flip
(
img
,
[
2
])],
2
)[:,
:,
:
h_old
+
h_pad
,
:]
img
=
torch
.
cat
([
img
,
torch
.
flip
(
img
,
[
3
])],
3
)[:,
:,
:,
:
w_old
+
w_pad
]
output
=
inference
(
img
,
model
,
tile
,
tile_overlap
,
window_size
,
scale
)
output
=
output
[
...
,
:
h_old
*
scale
,
:
w_old
*
scale
]
output
=
output
.
data
.
squeeze
()
.
float
()
.
cpu
()
.
clamp_
(
0
,
1
)
.
numpy
()
if
output
.
ndim
==
3
:
output
=
np
.
transpose
(
output
[[
2
,
1
,
0
],
:,
:],
(
1
,
2
,
0
))
# CHW-RGB to HCW-BGR
output
=
(
output
*
255.0
)
.
round
()
.
astype
(
np
.
uint8
)
# float32 to uint8
return
output
def
inference
(
img
,
model
,
tile
,
tile_overlap
,
window_size
,
scale
):
# test the image tile by tile
b
,
c
,
h
,
w
=
img
.
size
()
tile
=
min
(
tile
,
h
,
w
)
assert
tile
%
window_size
==
0
,
"tile size should be a multiple of window_size"
sf
=
scale
stride
=
tile
-
tile_overlap
h_idx_list
=
list
(
range
(
0
,
h
-
tile
,
stride
))
+
[
h
-
tile
]
w_idx_list
=
list
(
range
(
0
,
w
-
tile
,
stride
))
+
[
w
-
tile
]
E
=
torch
.
zeros
(
b
,
c
,
h
*
sf
,
w
*
sf
,
dtype
=
torch
.
half
,
device
=
device
)
.
type_as
(
img
)
W
=
torch
.
zeros_like
(
E
,
dtype
=
torch
.
half
,
device
=
device
)
for
h_idx
in
h_idx_list
:
for
w_idx
in
w_idx_list
:
in_patch
=
img
[
...
,
h_idx
:
h_idx
+
tile
,
w_idx
:
w_idx
+
tile
]
out_patch
=
model
(
in_patch
)
out_patch_mask
=
torch
.
ones_like
(
out_patch
)
E
[
...
,
h_idx
*
sf
:(
h_idx
+
tile
)
*
sf
,
w_idx
*
sf
:(
w_idx
+
tile
)
*
sf
]
.
add_
(
out_patch
)
W
[
...
,
h_idx
*
sf
:(
h_idx
+
tile
)
*
sf
,
w_idx
*
sf
:(
w_idx
+
tile
)
*
sf
]
.
add_
(
out_patch_mask
)
output
=
E
.
div_
(
W
)
return
output
\ No newline at end of file
swinir_arch.py
0 → 100644
View file @
7267b7d2
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment